update projects
5
projects/codes/A2C/README.md
Normal file
@@ -0,0 +1,5 @@
|
||||
## A2C
|
||||
|
||||
|
||||
|
||||
https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f
|
||||
56
projects/codes/A2C/a2c.py
Normal file
@@ -0,0 +1,56 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-05-03 22:16:08
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-07-20 23:54:40
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.distributions import Categorical
|
||||
|
||||
class ActorCritic(nn.Module):
|
||||
''' A2C网络模型,包含一个Actor和Critic
|
||||
'''
|
||||
def __init__(self, input_dim, output_dim, hidden_dim):
|
||||
super(ActorCritic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, output_dim),
|
||||
nn.Softmax(dim=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
value = self.critic(x)
|
||||
probs = self.actor(x)
|
||||
dist = Categorical(probs)
|
||||
return dist, value
|
||||
class A2C:
|
||||
''' A2C算法
|
||||
'''
|
||||
def __init__(self,n_states,n_actions,cfg) -> None:
|
||||
self.gamma = cfg.gamma
|
||||
self.device = torch.device(cfg.device)
|
||||
self.model = ActorCritic(n_states, n_actions, cfg.hidden_size).to(self.device)
|
||||
self.optimizer = optim.Adam(self.model.parameters())
|
||||
|
||||
def compute_returns(self,next_value, rewards, masks):
|
||||
R = next_value
|
||||
returns = []
|
||||
for step in reversed(range(len(rewards))):
|
||||
R = rewards[step] + self.gamma * R * masks[step]
|
||||
returns.insert(0, R)
|
||||
return returns
|
||||
@@ -0,0 +1,14 @@
|
||||
{
|
||||
"algo_name": "A2C",
|
||||
"env_name": "CartPole-v0",
|
||||
"n_envs": 8,
|
||||
"max_steps": 20000,
|
||||
"n_steps": 5,
|
||||
"gamma": 0.99,
|
||||
"lr": 0.001,
|
||||
"hidden_dim": 256,
|
||||
"deivce": "cpu",
|
||||
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials/outputs/CartPole-v0/20220713-221850/results/",
|
||||
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials/outputs/CartPole-v0/20220713-221850/models/",
|
||||
"save_fig": true
|
||||
}
|
||||
|
After Width: | Height: | Size: 64 KiB |
137
projects/codes/A2C/task0.py
Normal file
@@ -0,0 +1,137 @@
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import datetime
|
||||
import argparse
|
||||
from common.multiprocessing_env import SubprocVecEnv
|
||||
from a2c import ActorCritic
|
||||
from common.utils import save_results, make_dir
|
||||
from common.utils import plot_rewards, save_args
|
||||
|
||||
|
||||
def get_args():
|
||||
""" Hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='A2C',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--n_envs',default=8,type=int,help="numbers of environments")
|
||||
|
||||
parser.add_argument('--max_steps',default=20000,type=int,help="episodes of training")
|
||||
parser.add_argument('--n_steps',default=5,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--lr',default=1e-3,type=float,help="learning rate")
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results/' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models/' ) # path to save models
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
def make_envs(env_name):
|
||||
def _thunk():
|
||||
env = gym.make(env_name)
|
||||
env.seed(2)
|
||||
return env
|
||||
return _thunk
|
||||
def test_env(env,model,vis=False):
|
||||
state = env.reset()
|
||||
if vis: env.render()
|
||||
done = False
|
||||
total_reward = 0
|
||||
while not done:
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(cfg.device)
|
||||
dist, _ = model(state)
|
||||
next_state, reward, done, _ = env.step(dist.sample().cpu().numpy()[0])
|
||||
state = next_state
|
||||
if vis: env.render()
|
||||
total_reward += reward
|
||||
return total_reward
|
||||
|
||||
def compute_returns(next_value, rewards, masks, gamma=0.99):
|
||||
R = next_value
|
||||
returns = []
|
||||
for step in reversed(range(len(rewards))):
|
||||
R = rewards[step] + gamma * R * masks[step]
|
||||
returns.insert(0, R)
|
||||
return returns
|
||||
|
||||
|
||||
def train(cfg,envs):
|
||||
print('Start training!')
|
||||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||||
env = gym.make(cfg.env_name) # a single env
|
||||
env.seed(10)
|
||||
n_states = envs.observation_space.shape[0]
|
||||
n_actions = envs.action_space.n
|
||||
model = ActorCritic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||||
optimizer = optim.Adam(model.parameters())
|
||||
step_idx = 0
|
||||
test_rewards = []
|
||||
test_ma_rewards = []
|
||||
state = envs.reset()
|
||||
while step_idx < cfg.max_steps:
|
||||
log_probs = []
|
||||
values = []
|
||||
rewards = []
|
||||
masks = []
|
||||
entropy = 0
|
||||
# rollout trajectory
|
||||
for _ in range(cfg.n_steps):
|
||||
state = torch.FloatTensor(state).to(cfg.device)
|
||||
dist, value = model(state)
|
||||
action = dist.sample()
|
||||
next_state, reward, done, _ = envs.step(action.cpu().numpy())
|
||||
log_prob = dist.log_prob(action)
|
||||
entropy += dist.entropy().mean()
|
||||
log_probs.append(log_prob)
|
||||
values.append(value)
|
||||
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(cfg.device))
|
||||
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(cfg.device))
|
||||
state = next_state
|
||||
step_idx += 1
|
||||
if step_idx % 100 == 0:
|
||||
test_reward = np.mean([test_env(env,model) for _ in range(10)])
|
||||
print(f"step_idx:{step_idx}, test_reward:{test_reward}")
|
||||
test_rewards.append(test_reward)
|
||||
if test_ma_rewards:
|
||||
test_ma_rewards.append(0.9*test_ma_rewards[-1]+0.1*test_reward)
|
||||
else:
|
||||
test_ma_rewards.append(test_reward)
|
||||
# plot(step_idx, test_rewards)
|
||||
next_state = torch.FloatTensor(next_state).to(cfg.device)
|
||||
_, next_value = model(next_state)
|
||||
returns = compute_returns(next_value, rewards, masks)
|
||||
log_probs = torch.cat(log_probs)
|
||||
returns = torch.cat(returns).detach()
|
||||
values = torch.cat(values)
|
||||
advantage = returns - values
|
||||
actor_loss = -(log_probs * advantage.detach()).mean()
|
||||
critic_loss = advantage.pow(2).mean()
|
||||
loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
print('Finish training!')
|
||||
return {'rewards':test_rewards,'ma_rewards':test_ma_rewards}
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
envs = [make_envs(cfg.env_name) for i in range(cfg.n_envs)]
|
||||
envs = SubprocVecEnv(envs)
|
||||
# training
|
||||
res_dic = train(cfg,envs)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
save_args(cfg)
|
||||
save_results(res_dic, tag='train',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果
|
||||
144
projects/codes/DDPG/ddpg.py
Normal file
@@ -0,0 +1,144 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-09 20:25:52
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-06-09 19:04:44
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import random
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.nn.functional as F
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity # 经验回放的容量
|
||||
self.buffer = [] # 缓冲区
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
|
||||
'''
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
|
||||
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
''' 返回当前存储的量
|
||||
'''
|
||||
return len(self.buffer)
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
|
||||
super(Actor, self).__init__()
|
||||
self.linear1 = nn.Linear(n_states, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, n_actions)
|
||||
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
x = torch.tanh(self.linear3(x))
|
||||
return x
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
|
||||
super(Critic, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, 1)
|
||||
# 随机初始化为较小的值
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
def forward(self, state, action):
|
||||
# 按维数1拼接
|
||||
x = torch.cat([state, action], 1)
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
x = self.linear3(x)
|
||||
return x
|
||||
class DDPG:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
self.device = torch.device(cfg.device)
|
||||
self.critic = Critic(n_states, n_actions, cfg.hidden_dim).to(self.device)
|
||||
self.actor = Actor(n_states, n_actions, cfg.hidden_dim).to(self.device)
|
||||
self.target_critic = Critic(n_states, n_actions, cfg.hidden_dim).to(self.device)
|
||||
self.target_actor = Actor(n_states, n_actions, cfg.hidden_dim).to(self.device)
|
||||
|
||||
# 复制参数到目标网络
|
||||
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
|
||||
self.critic_optimizer = optim.Adam(
|
||||
self.critic.parameters(), lr=cfg.critic_lr)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.soft_tau = cfg.soft_tau # 软更新参数
|
||||
self.gamma = cfg.gamma
|
||||
|
||||
def choose_action(self, state):
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
|
||||
action = self.actor(state)
|
||||
return action.detach().cpu().numpy()[0, 0]
|
||||
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当 memory 中不满足一个批量时,不更新策略
|
||||
return
|
||||
# 从经验回放中(replay memory)中随机采样一个批量的转移(transition)
|
||||
state, action, reward, next_state, done = self.memory.sample(self.batch_size)
|
||||
# 转变为张量
|
||||
state = torch.FloatTensor(np.array(state)).to(self.device)
|
||||
next_state = torch.FloatTensor(np.array(next_state)).to(self.device)
|
||||
action = torch.FloatTensor(np.array(action)).to(self.device)
|
||||
reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device)
|
||||
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device)
|
||||
|
||||
policy_loss = self.critic(state, self.actor(state))
|
||||
policy_loss = -policy_loss.mean()
|
||||
next_action = self.target_actor(next_state)
|
||||
target_value = self.target_critic(next_state, next_action.detach())
|
||||
expected_value = reward + (1.0 - done) * self.gamma * target_value
|
||||
expected_value = torch.clamp(expected_value, -np.inf, np.inf)
|
||||
|
||||
value = self.critic(state, action)
|
||||
value_loss = nn.MSELoss()(value, expected_value.detach())
|
||||
|
||||
self.actor_optimizer.zero_grad()
|
||||
policy_loss.backward()
|
||||
self.actor_optimizer.step()
|
||||
self.critic_optimizer.zero_grad()
|
||||
value_loss.backward()
|
||||
self.critic_optimizer.step()
|
||||
# 软更新
|
||||
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
|
||||
target_param.data.copy_(
|
||||
target_param.data * (1.0 - self.soft_tau) +
|
||||
param.data * self.soft_tau
|
||||
)
|
||||
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
|
||||
target_param.data.copy_(
|
||||
target_param.data * (1.0 - self.soft_tau) +
|
||||
param.data * self.soft_tau
|
||||
)
|
||||
def save(self,path):
|
||||
torch.save(self.actor.state_dict(), path+'checkpoint.pt')
|
||||
|
||||
def load(self,path):
|
||||
self.actor.load_state_dict(torch.load(path+'checkpoint.pt'))
|
||||
56
projects/codes/DDPG/env.py
Normal file
@@ -0,0 +1,56 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-10 15:28:30
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-09-16 00:52:30
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
class NormalizedActions(gym.ActionWrapper):
|
||||
''' 将action范围重定在[0.1]之间
|
||||
'''
|
||||
def action(self, action):
|
||||
low_bound = self.action_space.low
|
||||
upper_bound = self.action_space.high
|
||||
action = low_bound + (action + 1.0) * 0.5 * (upper_bound - low_bound)
|
||||
action = np.clip(action, low_bound, upper_bound)
|
||||
return action
|
||||
|
||||
def reverse_action(self, action):
|
||||
low_bound = self.action_space.low
|
||||
upper_bound = self.action_space.high
|
||||
action = 2 * (action - low_bound) / (upper_bound - low_bound) - 1
|
||||
action = np.clip(action, low_bound, upper_bound)
|
||||
return action
|
||||
|
||||
class OUNoise(object):
|
||||
'''Ornstein–Uhlenbeck噪声
|
||||
'''
|
||||
def __init__(self, action_space, mu=0.0, theta=0.15, max_sigma=0.3, min_sigma=0.3, decay_period=100000):
|
||||
self.mu = mu # OU噪声的参数
|
||||
self.theta = theta # OU噪声的参数
|
||||
self.sigma = max_sigma # OU噪声的参数
|
||||
self.max_sigma = max_sigma
|
||||
self.min_sigma = min_sigma
|
||||
self.decay_period = decay_period
|
||||
self.n_actions = action_space.shape[0]
|
||||
self.low = action_space.low
|
||||
self.high = action_space.high
|
||||
self.reset()
|
||||
def reset(self):
|
||||
self.obs = np.ones(self.n_actions) * self.mu
|
||||
def evolve_obs(self):
|
||||
x = self.obs
|
||||
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.n_actions)
|
||||
self.obs = x + dx
|
||||
return self.obs
|
||||
def get_action(self, action, t=0):
|
||||
ou_obs = self.evolve_obs()
|
||||
self.sigma = self.max_sigma - (self.max_sigma - self.min_sigma) * min(1.0, t / self.decay_period) # sigma会逐渐衰减
|
||||
return np.clip(action + ou_obs, self.low, self.high) # 动作加上噪声后进行剪切
|
||||
@@ -0,0 +1,18 @@
|
||||
{
|
||||
"algo_name": "DDPG",
|
||||
"env_name": "Pendulum-v1",
|
||||
"train_eps": 300,
|
||||
"test_eps": 20,
|
||||
"gamma": 0.99,
|
||||
"critic_lr": 0.001,
|
||||
"actor_lr": 0.0001,
|
||||
"memory_capacity": 8000,
|
||||
"batch_size": 128,
|
||||
"target_update": 2,
|
||||
"soft_tau": 0.01,
|
||||
"hidden_dim": 256,
|
||||
"deivce": "cpu",
|
||||
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials/outputs/DDPG/outputs/Pendulum-v1/20220713-225402/results//",
|
||||
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials/outputs/DDPG/outputs/Pendulum-v1/20220713-225402/models/",
|
||||
"save_fig": true
|
||||
}
|
||||
|
After Width: | Height: | Size: 42 KiB |
|
After Width: | Height: | Size: 66 KiB |
133
projects/codes/DDPG/task0.py
Normal file
@@ -0,0 +1,133 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 20:58:21
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-07-21 21:51:34
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
|
||||
import datetime
|
||||
import gym
|
||||
import torch
|
||||
import argparse
|
||||
|
||||
from env import NormalizedActions,OUNoise
|
||||
from ddpg import DDPG
|
||||
from common.utils import save_results,make_dir
|
||||
from common.utils import plot_rewards,save_args
|
||||
|
||||
def get_args():
|
||||
""" Hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='DDPG',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='Pendulum-v1',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=300,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--critic_lr',default=1e-3,type=float,help="learning rate of critic")
|
||||
parser.add_argument('--actor_lr',default=1e-4,type=float,help="learning rate of actor")
|
||||
parser.add_argument('--memory_capacity',default=8000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=128,type=int)
|
||||
parser.add_argument('--target_update',default=2,type=int)
|
||||
parser.add_argument('--soft_tau',default=1e-2,type=float)
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results/' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models/' ) # path to save models
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声
|
||||
env.seed(seed) # 随机种子
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
agent = DDPG(n_states,n_actions,cfg)
|
||||
return env,agent
|
||||
def train(cfg, env, agent):
|
||||
print('Start training!')
|
||||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||||
ou_noise = OUNoise(env.action_space) # noise of action
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
ou_noise.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
i_step = 0
|
||||
while not done:
|
||||
i_step += 1
|
||||
action = agent.choose_action(state)
|
||||
action = ou_noise.get_action(action, i_step)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, reward, next_state, done)
|
||||
agent.update()
|
||||
state = next_state
|
||||
if (i_ep+1)%10 == 0:
|
||||
print(f'Env:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}')
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('Finish training!')
|
||||
return {'rewards':rewards,'ma_rewards':ma_rewards}
|
||||
|
||||
def test(cfg, env, agent):
|
||||
print('Start testing')
|
||||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.test_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
i_step = 0
|
||||
while not done:
|
||||
i_step += 1
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
state = next_state
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"Epside:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.1f}")
|
||||
print('Finish testing!')
|
||||
return {'rewards':rewards,'ma_rewards':ma_rewards}
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
# training
|
||||
env,agent = env_agent_config(cfg,seed=1)
|
||||
res_dic = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
save_args(cfg)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(res_dic, tag='train',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train")
|
||||
# testing
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=cfg.model_path)
|
||||
res_dic = test(cfg,env,agent)
|
||||
save_results(res_dic, tag='test',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="test")
|
||||
|
||||
218
projects/codes/DQN/README.md
Normal file
@@ -0,0 +1,218 @@
|
||||
# DQN
|
||||
|
||||
## 原理简介
|
||||
|
||||
DQN是Q-leanning算法的优化和延伸,Q-leaning中使用有限的Q表存储值的信息,而DQN中则用神经网络替代Q表存储信息,这样更适用于高维的情况,相关知识基础可参考[datawhale李宏毅笔记-Q学习](https://datawhalechina.github.io/easy-rl/#/chapter6/chapter6)。
|
||||
|
||||
论文方面主要可以参考两篇,一篇就是2013年谷歌DeepMind团队的[Playing Atari with Deep Reinforcement Learning](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf),一篇是也是他们团队后来在Nature杂志上发表的[Human-level control through deep reinforcement learning](https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf)。后者在算法层面增加target q-net,也可以叫做Nature DQN。
|
||||
|
||||
Nature DQN使用了两个Q网络,一个当前Q网络𝑄用来选择动作,更新模型参数,另一个目标Q网络𝑄′用于计算目标Q值。目标Q网络的网络参数不需要迭代更新,而是每隔一段时间从当前Q网络𝑄复制过来,即延时更新,这样可以减少目标Q值和当前的Q值相关性。
|
||||
|
||||
要注意的是,两个Q网络的结构是一模一样的。这样才可以复制网络参数。Nature DQN和[Playing Atari with Deep Reinforcement Learning](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf)相比,除了用一个新的相同结构的目标Q网络来计算目标Q值以外,其余部分基本是完全相同的。细节也可参考[强化学习(九)Deep Q-Learning进阶之Nature DQN](https://www.cnblogs.com/pinard/p/9756075.html)。
|
||||
|
||||
https://blog.csdn.net/JohnJim0/article/details/109557173)
|
||||
|
||||
## 伪代码
|
||||
|
||||
<img src="assets/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pvaG5KaW0w,size_16,color_FFFFFF,t_70.png" alt="img" style="zoom:50%;" />
|
||||
|
||||
## 代码实现
|
||||
|
||||
### RL接口
|
||||
|
||||
首先是强化学习训练的基本接口,即通用的训练模式:
|
||||
```python
|
||||
for i_episode in range(MAX_EPISODES):
|
||||
state = env.reset() # reset环境状态
|
||||
for i_step in range(MAX_STEPS):
|
||||
action = agent.choose_action(state) # 根据当前环境state选择action
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||||
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
|
||||
agent.update() # 每步更新网络
|
||||
state = next_state # 跳转到下一个状态
|
||||
if done:
|
||||
break
|
||||
```
|
||||
每个episode加一个MAX_STEPS,也可以使用while not done, 加这个max_steps有时是因为比如gym环境训练目标就是在200个step下达到200的reward,或者是当完成一个episode的步数较多时也可以设置,基本流程跟所有伪代码一致,如下:
|
||||
1. agent选择动作
|
||||
2. 环境根据agent的动作反馈出next_state和reward
|
||||
3. agent进行更新,如有memory就会将transition(包含state,reward,action等)存入memory中
|
||||
4. 跳转到下一个状态
|
||||
5. 如果done了,就跳出循环,进行下一个episode的训练。
|
||||
|
||||
想要实现完整的算法还需要创建Qnet,Replaybuffer等类
|
||||
|
||||
### 两个Q网络
|
||||
|
||||
上文讲了Nature DQN中有两个Q网络,一个是policy_net,一个是延时更新的target_net,两个网络的结构是一模一样的,如下(见```model.py```),注意DQN使用的Qnet就是全连接网络即FCH:
|
||||
```python
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class FCN(nn.Module):
|
||||
def __init__(self, n_states=4, n_actions=18):
|
||||
""" 初始化q网络,为全连接网络
|
||||
n_states: 输入的feature即环境的state数目
|
||||
n_actions: 输出的action总个数
|
||||
"""
|
||||
super(FCN, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, 128) # 输入层
|
||||
self.fc2 = nn.Linear(128, 128) # 隐藏层
|
||||
self.fc3 = nn.Linear(128, n_actions) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
```
|
||||
输入为n_states,输出为n_actions,包含一个128维度的隐藏层,这里根据需要可增加隐藏层维度和数量,然后一般使用relu激活函数,这里跟深度学习的网路设置是一样的。
|
||||
|
||||
### Replay Buffer
|
||||
|
||||
然后就是Replay Memory了,其作用主要是是克服经验数据的相关性(correlated data)和非平稳分布(non-stationary distribution)问题,实现如下(见```memory.py```):
|
||||
|
||||
```python
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
class ReplayBuffer:
|
||||
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity
|
||||
self.buffer = []
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size)
|
||||
state, action, reward, next_state, done = zip(*batch)
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
return len(self.buffer)
|
||||
```
|
||||
|
||||
参数capacity表示buffer的容量,主要包括push和sample两个步骤,push是将transitions放到memory中,sample是从memory随机抽取一些transition。
|
||||
|
||||
### Agent类
|
||||
|
||||
在```agent.py```中我们定义强化学习算法类,包括```choose_action```(选择动作,使用e-greedy策略时会多一个```predict```函数,下面会将到)和```update```(更新)等函数。
|
||||
|
||||
在类中建立两个网络,以及optimizer和memory,
|
||||
|
||||
```python
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # copy params from policy net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||
```
|
||||
然后是选择action:
|
||||
|
||||
```python
|
||||
def choose_action(self, state):
|
||||
'''选择动作
|
||||
'''
|
||||
self.frame_idx += 1
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
action = self.predict(state)
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
```
|
||||
|
||||
这里使用e-greedy策略,即设置一个参数epsilon,如果生成的随机数大于epsilon,就根据网络预测的选择action,否则还是随机选择action,这个epsilon是会逐渐减小的,可以使用线性或者指数减小的方式,但不会减小到零,这样在训练稳定时还能保持一定的探索,这部分可以学习探索与利用(exploration and exploition)相关知识。
|
||||
|
||||
上面讲到的预测函数其实就是根据state选取q值最大的action,如下:
|
||||
|
||||
```python
|
||||
def predict(self,state):
|
||||
with torch.no_grad():
|
||||
state = torch.tensor([state], device=self.device, dtype=torch.float32)
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item()
|
||||
```
|
||||
|
||||
然后是更新函数了:
|
||||
|
||||
```python
|
||||
def update(self):
|
||||
|
||||
if len(self.memory) < self.batch_size:
|
||||
return
|
||||
# 从memory中随机采样transition
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
||||
self.batch_size)
|
||||
'''转为张量
|
||||
例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]])'''
|
||||
state_batch = torch.tensor(
|
||||
state_batch, device=self.device, dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(
|
||||
1) # 例如tensor([[1],...,[0]])
|
||||
reward_batch = torch.tensor(
|
||||
reward_batch, device=self.device, dtype=torch.float) # tensor([1., 1.,...,1])
|
||||
next_state_batch = torch.tensor(
|
||||
next_state_batch, device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(
|
||||
done_batch), device=self.device)
|
||||
|
||||
'''计算当前(s_t,a)对应的Q(s_t, a)'''
|
||||
'''torch.gather:对于a=torch.Tensor([[1,2],[3,4]]),那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]])'''
|
||||
q_values = self.policy_net(state_batch).gather(
|
||||
dim=1, index=action_batch) # 等价于self.forward
|
||||
# 计算所有next states的V(s_{t+1}),即通过target_net中选取reward最大的对应states
|
||||
next_q_values = self.target_net(next_state_batch).max(
|
||||
1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,])
|
||||
# 计算 expected_q_value
|
||||
# 对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||||
expected_q_values = reward_batch + \
|
||||
self.gamma * next_q_values * (1-done_batch)
|
||||
# self.loss = F.smooth_l1_loss(q_values,expected_q_values.unsqueeze(1)) # 计算 Huber loss
|
||||
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算 均方误差loss
|
||||
# 优化模型
|
||||
self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step
|
||||
# loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分
|
||||
loss.backward()
|
||||
# for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
# param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step() # 更新模型
|
||||
```
|
||||
|
||||
更新遵循伪代码的以下部分:
|
||||
|
||||
<img src="assets/image-20210507162813393.png" alt="image-20210507162813393" style="zoom:50%;" />
|
||||
|
||||
首先从replay buffer中选取一个batch的数据,计算loss,然后进行minibatch SGD。
|
||||
|
||||
然后是保存与加载模型的部分,如下:
|
||||
|
||||
```python
|
||||
def save(self, path):
|
||||
torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth')
|
||||
def load(self, path):
|
||||
self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth'))
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
param.data.copy_(target_param.data)
|
||||
```
|
||||
|
||||
|
||||
|
||||
### 实验结果
|
||||
|
||||
训练结果如下:
|
||||
|
||||
<img src="assets/train_rewards_curve.png" alt="train_rewards_curve" style="zoom: 67%;" />
|
||||
|
||||
<img src="assets/eval_rewards_curve.png" alt="eval_rewards_curve" style="zoom:67%;" />
|
||||
|
||||
## 参考
|
||||
|
||||
[with torch.no_grad()](https://www.jianshu.com/p/1cea017f5d11)
|
||||
|
||||
BIN
projects/codes/DQN/assets/eval_rewards_curve.png
Normal file
|
After Width: | Height: | Size: 36 KiB |
BIN
projects/codes/DQN/assets/image-20210507162813393.png
Normal file
|
After Width: | Height: | Size: 76 KiB |
BIN
projects/codes/DQN/assets/rewards_curve_train.png
Normal file
|
After Width: | Height: | Size: 58 KiB |
BIN
projects/codes/DQN/assets/train_rewards_curve.png
Normal file
|
After Width: | Height: | Size: 37 KiB |
|
After Width: | Height: | Size: 325 KiB |
126
projects/codes/DQN/dqn.py
Normal file
@@ -0,0 +1,126 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:50:49
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-07-20 23:57:16
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
'''off-policy
|
||||
'''
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
import random
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, n_states,n_actions,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
n_states: 输入的特征数即环境的状态维度
|
||||
n_actions: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||||
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity # 经验回放的容量
|
||||
self.buffer = [] # 缓冲区
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
|
||||
'''
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
|
||||
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
''' 返回当前存储的量
|
||||
'''
|
||||
return len(self.buffer)
|
||||
|
||||
class DQN:
|
||||
def __init__(self, n_states,n_actions,cfg):
|
||||
|
||||
self.n_actions = n_actions
|
||||
self.device = torch.device(cfg.device) # cpu or cuda
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
# e-greedy策略相关参数
|
||||
self.frame_idx = 0 # 用于epsilon的衰减计数
|
||||
self.epsilon = lambda frame_idx: cfg.epsilon_end + \
|
||||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = MLP(n_states,n_actions).to(self.device)
|
||||
self.target_net = MLP(n_states,n_actions).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity) # 经验回放
|
||||
|
||||
def choose_action(self, state):
|
||||
''' 选择动作
|
||||
'''
|
||||
self.frame_idx += 1
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
with torch.no_grad():
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||||
return
|
||||
# 从经验回放中(replay memory)中随机采样一个批量的转移(transition)
|
||||
# print('updating')
|
||||
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
||||
self.batch_size)
|
||||
state_batch = torch.tensor(np.array(state_batch), device=self.device, dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float)
|
||||
next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch), device=self.device)
|
||||
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) # 计算当前状态(s_t,a)对应的Q(s_t, a)
|
||||
next_q_values = self.target_net(next_state_batch).max(1)[0].detach() # 计算下一时刻的状态(s_t_,a)对应的Q值
|
||||
# 计算期望的Q值,对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||||
expected_q_values = reward_batch + self.gamma * next_q_values * (1-done_batch)
|
||||
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算均方根损失
|
||||
# 优化更新模型
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step()
|
||||
|
||||
def save(self, path):
|
||||
torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth')
|
||||
|
||||
def load(self, path):
|
||||
self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth'))
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
param.data.copy_(target_param.data)
|
||||
134
projects/codes/DQN/dqn_cnn.py
Normal file
@@ -0,0 +1,134 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.autograd as autograd
|
||||
import random
|
||||
import math
|
||||
class CNN(nn.Module):
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super(CNN, self).__init__()
|
||||
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
|
||||
self.features = nn.Sequential(
|
||||
nn.Conv2d(input_dim[0], 32, kernel_size=8, stride=4),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(32, 64, kernel_size=4, stride=2),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(64, 64, kernel_size=3, stride=1),
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
self.fc = nn.Sequential(
|
||||
nn.Linear(self.feature_size(), 512),
|
||||
nn.ReLU(),
|
||||
nn.Linear(512, self.output_dim)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.features(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
def feature_size(self):
|
||||
return self.features(autograd.Variable(torch.zeros(1, *self.input_dim))).view(1, -1).size(1)
|
||||
|
||||
|
||||
def act(self, state, epsilon):
|
||||
if random.random() > epsilon:
|
||||
state = Variable(torch.FloatTensor(np.float32(state)).unsqueeze(0), volatile=True)
|
||||
q_value = self.forward(state)
|
||||
action = q_value.max(1)[1].data[0]
|
||||
else:
|
||||
action = random.randrange(env.action_space.n)
|
||||
return action
|
||||
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity # 经验回放的容量
|
||||
self.buffer = [] # 缓冲区
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
|
||||
'''
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
|
||||
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
''' 返回当前存储的量
|
||||
'''
|
||||
return len(self.buffer)
|
||||
|
||||
class DQN:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
self.device = cfg.device # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
# e-greedy策略相关参数
|
||||
self.frame_idx = 0 # 用于epsilon的衰减计数
|
||||
self.epsilon = lambda frame_idx: cfg.epsilon_end + \
|
||||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = CNN(n_states, n_actions).to(self.device)
|
||||
self.target_net = CNN(n_states, n_actions).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity) # 经验回放
|
||||
|
||||
def choose_action(self, state):
|
||||
''' 选择动作
|
||||
'''
|
||||
self.frame_idx += 1
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
with torch.no_grad():
|
||||
print(type(state))
|
||||
state = torch.tensor([state], device=self.device, dtype=torch.float32)
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||||
return
|
||||
# 从经验回放中(replay memory)中随机采样一个批量的转移(transition)
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
||||
self.batch_size)
|
||||
# 转为张量
|
||||
state_batch = torch.tensor(state_batch, device=self.device, dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch, device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch), device=self.device)
|
||||
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) # 计算当前状态(s_t,a)对应的Q(s_t, a)
|
||||
next_q_values = self.target_net(next_state_batch).max(1)[0].detach() # 计算下一时刻的状态(s_t_,a)对应的Q值
|
||||
# 计算期望的Q值,对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||||
expected_q_values = reward_batch + self.gamma * next_q_values * (1-done_batch)
|
||||
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算均方根损失
|
||||
# 优化更新模型
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step()
|
||||
|
||||
def save(self, path):
|
||||
torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth')
|
||||
|
||||
def load(self, path):
|
||||
self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth'))
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
param.data.copy_(target_param.data)
|
||||
142
projects/codes/DQN/dqn_cnn2.py
Normal file
@@ -0,0 +1,142 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.autograd as autograd
|
||||
import random
|
||||
import math
|
||||
import numpy as np
|
||||
class CNN(nn.Module):
|
||||
def __init__(self, n_frames, n_actions):
|
||||
super(CNN,self).__init__()
|
||||
self.n_frames = n_frames
|
||||
self.n_actions = n_actions
|
||||
|
||||
# Layers
|
||||
self.conv1 = nn.Conv2d(
|
||||
in_channels=n_frames,
|
||||
out_channels=16,
|
||||
kernel_size=8,
|
||||
stride=4,
|
||||
padding=2
|
||||
)
|
||||
self.conv2 = nn.Conv2d(
|
||||
in_channels=16,
|
||||
out_channels=32,
|
||||
kernel_size=4,
|
||||
stride=2,
|
||||
padding=1
|
||||
)
|
||||
self.fc1 = nn.Linear(
|
||||
in_features=3200,
|
||||
out_features=256,
|
||||
)
|
||||
self.fc2 = nn.Linear(
|
||||
in_features=256,
|
||||
out_features=n_actions,
|
||||
)
|
||||
|
||||
# Activation Functions
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def flatten(self, x):
|
||||
batch_size = x.size()[0]
|
||||
x = x.view(batch_size, -1)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
# Forward pass
|
||||
x = self.relu(self.conv1(x)) # In: (80, 80, 4) Out: (20, 20, 16)
|
||||
x = self.relu(self.conv2(x)) # In: (20, 20, 16) Out: (10, 10, 32)
|
||||
x = self.flatten(x) # In: (10, 10, 32) Out: (3200,)
|
||||
x = self.relu(self.fc1(x)) # In: (3200,) Out: (256,)
|
||||
x = self.fc2(x) # In: (256,) Out: (4,)
|
||||
|
||||
return x
|
||||
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity # 经验回放的容量
|
||||
self.buffer = [] # 缓冲区
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
|
||||
'''
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
|
||||
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
''' 返回当前存储的量
|
||||
'''
|
||||
return len(self.buffer)
|
||||
|
||||
class DQN:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
self.device = cfg.device # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
# e-greedy策略相关参数
|
||||
self.frame_idx = 0 # 用于epsilon的衰减计数
|
||||
self.epsilon = lambda frame_idx: cfg.epsilon_end + \
|
||||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = CNN(n_states, n_actions).to(self.device)
|
||||
self.target_net = CNN(n_states, n_actions).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity) # 经验回放
|
||||
|
||||
def choose_action(self, state):
|
||||
''' 选择动作
|
||||
'''
|
||||
self.frame_idx += 1
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
with torch.no_grad():
|
||||
state = torch.tensor([state], device=self.device, dtype=torch.float32)
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||||
return
|
||||
# 从经验回放中(replay memory)中随机采样一个批量的转移(transition)
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
||||
self.batch_size)
|
||||
# 转为张量
|
||||
state_batch = torch.tensor(state_batch, device=self.device, dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch, device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch), device=self.device)
|
||||
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) # 计算当前状态(s_t,a)对应的Q(s_t, a)
|
||||
next_q_values = self.target_net(next_state_batch).max(1)[0].detach() # 计算下一时刻的状态(s_t_,a)对应的Q值
|
||||
# 计算期望的Q值,对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||||
expected_q_values = reward_batch + self.gamma * next_q_values * (1-done_batch)
|
||||
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算均方根损失
|
||||
# 优化更新模型
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step()
|
||||
|
||||
def save(self, path):
|
||||
torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth')
|
||||
|
||||
def load(self, path):
|
||||
self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth'))
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
param.data.copy_(target_param.data)
|
||||
@@ -0,0 +1,19 @@
|
||||
{
|
||||
"algo_name": "DQN",
|
||||
"env_name": "CartPole-v0",
|
||||
"train_eps": 200,
|
||||
"test_eps": 20,
|
||||
"gamma": 0.95,
|
||||
"epsilon_start": 0.95,
|
||||
"epsilon_end": 0.01,
|
||||
"epsilon_decay": 500,
|
||||
"lr": 0.0001,
|
||||
"memory_capacity": 100000,
|
||||
"batch_size": 64,
|
||||
"target_update": 4,
|
||||
"hidden_dim": 256,
|
||||
"deivce": "cpu",
|
||||
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials/outputs/CartPole-v0/20220713-211653/results/",
|
||||
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials/outputs/CartPole-v0/20220713-211653/models/",
|
||||
"save_fig": true
|
||||
}
|
||||
|
After Width: | Height: | Size: 28 KiB |
|
After Width: | Height: | Size: 48 KiB |
148
projects/codes/DQN/task0.py
Normal file
@@ -0,0 +1,148 @@
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
import numpy as np
|
||||
import argparse
|
||||
from common.utils import save_results, make_dir
|
||||
from common.utils import plot_rewards,save_args
|
||||
from dqn import DQN
|
||||
|
||||
def get_args():
|
||||
""" Hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
|
||||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
|
||||
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
|
||||
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=64,type=int)
|
||||
parser.add_argument('--target_update',default=4,type=int)
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results/' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models/' ) # path to save models
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
n_states = env.observation_space.shape[0] # 状态维度
|
||||
n_actions = env.action_space.n # 动作维度
|
||||
print(f"n states: {n_states}, n actions: {n_actions}")
|
||||
agent = DQN(n_states,n_actions, cfg) # 创建智能体
|
||||
if seed !=0: # 设置随机种子
|
||||
torch.manual_seed(seed)
|
||||
env.seed(seed)
|
||||
np.random.seed(seed)
|
||||
return env, agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
''' Training
|
||||
'''
|
||||
print('Start training!')
|
||||
print(f'Env:{cfg.env_name}, A{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
steps = []
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
ep_step = 0
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
ep_step += 1
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
agent.memory.push(state, action, reward,
|
||||
next_state, done) # 保存transition
|
||||
state = next_state # 更新下一个状态
|
||||
agent.update() # 更新智能体
|
||||
ep_reward += reward # 累加奖励
|
||||
if done:
|
||||
break
|
||||
if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
if (i_ep + 1) % 1 == 0:
|
||||
print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f} Epislon:{agent.epsilon(agent.frame_idx):.3f}')
|
||||
print('Finish training!')
|
||||
env.close()
|
||||
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
|
||||
return res_dic
|
||||
|
||||
|
||||
def test(cfg, env, agent):
|
||||
print('Start testing!')
|
||||
print(f'Env:{cfg.env_name}, A{cfg.algo_name}, 设备:{cfg.device}')
|
||||
############# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0 ###############
|
||||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||||
################################################################################
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
steps = []
|
||||
for i_ep in range(cfg.test_eps):
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
ep_step = 0
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
ep_step+=1
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
state = next_state # 更新下一个状态
|
||||
ep_reward += reward # 累加奖励
|
||||
if done:
|
||||
break
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f'Episode:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f}')
|
||||
print('Finish testing')
|
||||
env.close()
|
||||
return {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
# 训练
|
||||
env, agent = env_agent_config(cfg)
|
||||
res_dic = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
save_args(cfg) # save parameters
|
||||
agent.save(path=cfg.model_path) # save model
|
||||
save_results(res_dic, tag='train',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train")
|
||||
# 测试
|
||||
env, agent = env_agent_config(cfg)
|
||||
agent.load(path=cfg.model_path) # 导入模型
|
||||
res_dic = test(cfg, env, agent)
|
||||
save_results(res_dic, tag='test',
|
||||
path=cfg.result_path) # 保存结果
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果
|
||||
39
projects/codes/DoubleDQN/README.md
Normal file
@@ -0,0 +1,39 @@
|
||||
食用本篇之前,需要有DQN算法的基础,参考[DQN算法实战](../DQN)。
|
||||
|
||||
## 原理简介
|
||||
|
||||
Double-DQN是2016年提出的算法,灵感源自2010年的Double-Qlearning,可参考论文[Deep Reinforcement Learning with Double Q-learning](https://arxiv.org/abs/1509.06461)。
|
||||
跟Nature DQN一样,Double-DQN也用了两个网络,一个当前网络(对应用$Q$表示),一个目标网络(对应一般用$Q'$表示,为方便区分,以下用$Q_{tar}$代替)。我们先回忆一下,对于非终止状态,目标$Q_{tar}$值计算如下
|
||||

|
||||
|
||||
而在Double-DQN中,不再是直接从目标$Q_{tar}$网络中选择各个动作中的最大$Q_{tar}$值,而是先从当前$Q$网络选择$Q$值最大对应的动作,然后代入到目标网络中计算对应的值:
|
||||

|
||||
Double-DQN的好处是Nature DQN中使用max虽然可以快速让Q值向可能的优化目标靠拢,但是很容易过犹不及,导致过度估计(Over Estimation),所谓过度估计就是最终我们得到的算法模型有很大的偏差(bias)。为了解决这个问题, DDQN通过解耦目标Q值动作的选择和目标Q值的计算这两步,来达到消除过度估计的问题,感兴趣可以阅读原论文。
|
||||
|
||||
伪代码如下:
|
||||

|
||||
当然也可以两个网络可以同时为当前网络和目标网络,如下:
|
||||

|
||||
或者这样更好理解如何同时为当前网络和目标网络:
|
||||

|
||||
|
||||
## 代码实战
|
||||
完整程序见[github](https://github.com/JohnJim0816/reinforcement-learning-tutorials/tree/master/DoubleDQN)。结合上面的原理,其实Double DQN改进来很简单,基本只需要在```update```中修改几行代码,如下:
|
||||
```python
|
||||
'''以下是Nature DQN的q_target计算方式
|
||||
next_q_state_value = self.target_net(
|
||||
next_state_batch).max(1)[0].detach() # # 计算所有next states的Q'(s_{t+1})的最大值,Q'为目标网络的q函数,比如tensor([ 0.0060, -0.0171,...,])
|
||||
#计算 q_target
|
||||
#对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||||
q_target = reward_batch + self.gamma * next_q_state_value * (1-done_batch[0])
|
||||
'''
|
||||
'''以下是Double DQNq_target计算方式,与NatureDQN稍有不同'''
|
||||
next_target_values = self.target_net(
|
||||
next_state_batch)
|
||||
#选出Q(s_t‘, a)对应的action,代入到next_target_values获得target net对应的next_q_value,即Q’(s_t|a=argmax Q(s_t‘, a))
|
||||
next_target_q_value = next_target_values.gather(1, torch.max(next_q_values, 1)[1].unsqueeze(1)).squeeze(1)
|
||||
q_target = reward_batch + self.gamma * next_target_q_value * (1-done_batch[0])
|
||||
```
|
||||
reward变化结果如下:
|
||||

|
||||
其中下边蓝色和红色分别表示Double DQN和Nature DQN在训练中的reward变化图,而上面蓝色和绿色则表示Double DQN和Nature DQN在测试中的reward变化图。
|
||||
BIN
projects/codes/DoubleDQN/assets/20201222145725907.png
Normal file
|
After Width: | Height: | Size: 17 KiB |
BIN
projects/codes/DoubleDQN/assets/20201222150225327.png
Normal file
|
After Width: | Height: | Size: 24 KiB |
|
After Width: | Height: | Size: 105 KiB |
|
After Width: | Height: | Size: 74 KiB |
|
After Width: | Height: | Size: 185 KiB |
|
After Width: | Height: | Size: 75 KiB |
160
projects/codes/DoubleDQN/double_dqn.py
Normal file
@@ -0,0 +1,160 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:50:49
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-07-21 00:08:26
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
'''off-policy
|
||||
'''
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.nn.functional as F
|
||||
import random
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity # 经验回放的容量
|
||||
self.buffer = [] # 缓冲区
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
|
||||
'''
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
|
||||
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
''' 返回当前存储的量
|
||||
'''
|
||||
return len(self.buffer)
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, n_states,n_actions,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
n_states: 输入的特征数即环境的状态维度
|
||||
n_actions: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||||
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
|
||||
class DoubleDQN:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
self.device = torch.device(cfg.device) # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma
|
||||
# e-greedy策略相关参数
|
||||
self.actions_count = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
# target_net copy from policy_net
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
# self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
|
||||
# 可查parameters()与state_dict()的区别,前者require_grad=True
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
self.loss = 0
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||
|
||||
def choose_action(self, state):
|
||||
'''选择动作
|
||||
'''
|
||||
self.actions_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.actions_count / self.epsilon_decay)
|
||||
if random.random() > self.epsilon:
|
||||
with torch.no_grad():
|
||||
# 先转为张量便于丢给神经网络,state元素数据原本为float64
|
||||
# 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
|
||||
state = torch.tensor(
|
||||
[state], device=self.device, dtype=torch.float32)
|
||||
# 如tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
|
||||
q_value = self.policy_net(state)
|
||||
# tensor.max(1)返回每行的最大值以及对应的下标,
|
||||
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
|
||||
# 所以tensor.max(1)[1]返回最大值对应的下标,即action
|
||||
action = q_value.max(1)[1].item()
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
def update(self):
|
||||
|
||||
if len(self.memory) < self.batch_size:
|
||||
return
|
||||
# 从memory中随机采样transition
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
||||
self.batch_size)
|
||||
# convert to tensor
|
||||
state_batch = torch.tensor(
|
||||
state_batch, device=self.device, dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(
|
||||
1) # 例如tensor([[1],...,[0]])
|
||||
reward_batch = torch.tensor(
|
||||
reward_batch, device=self.device, dtype=torch.float) # tensor([1., 1.,...,1])
|
||||
next_state_batch = torch.tensor(
|
||||
next_state_batch, device=self.device, dtype=torch.float)
|
||||
|
||||
done_batch = torch.tensor(np.float32(
|
||||
done_batch), device=self.device) # 将bool转为float然后转为张量
|
||||
# 计算当前(s_t,a)对应的Q(s_t, a)
|
||||
q_values = self.policy_net(state_batch)
|
||||
next_q_values = self.policy_net(next_state_batch)
|
||||
# 代入当前选择的action,得到Q(s_t|a=a_t)
|
||||
q_value = q_values.gather(dim=1, index=action_batch)
|
||||
'''以下是Nature DQN的q_target计算方式
|
||||
# 计算所有next states的Q'(s_{t+1})的最大值,Q'为目标网络的q函数
|
||||
next_q_state_value = self.target_net(
|
||||
next_state_batch).max(1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,])
|
||||
# 计算 q_target
|
||||
# 对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||||
q_target = reward_batch + self.gamma * next_q_state_value * (1-done_batch[0])
|
||||
'''
|
||||
'''以下是Double DQN q_target计算方式,与NatureDQN稍有不同'''
|
||||
next_target_values = self.target_net(
|
||||
next_state_batch)
|
||||
# 选出Q(s_t‘, a)对应的action,代入到next_target_values获得target net对应的next_q_value,即Q’(s_t|a=argmax Q(s_t‘, a))
|
||||
next_target_q_value = next_target_values.gather(1, torch.max(next_q_values, 1)[1].unsqueeze(1)).squeeze(1)
|
||||
q_target = reward_batch + self.gamma * next_target_q_value * (1-done_batch)
|
||||
self.loss = nn.MSELoss()(q_value, q_target.unsqueeze(1)) # 计算 均方误差loss
|
||||
# 优化模型
|
||||
self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step
|
||||
# loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分
|
||||
self.loss.backward()
|
||||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step() # 更新模型
|
||||
|
||||
def save(self,path):
|
||||
torch.save(self.target_net.state_dict(), path+'checkpoint.pth')
|
||||
|
||||
def load(self,path):
|
||||
self.target_net.load_state_dict(torch.load(path+'checkpoint.pth'))
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
param.data.copy_(target_param.data)
|
||||
@@ -0,0 +1,19 @@
|
||||
{
|
||||
"algo_name": "DoubleDQN",
|
||||
"env_name": "CartPole-v0",
|
||||
"train_eps": 200,
|
||||
"test_eps": 20,
|
||||
"gamma": 0.99,
|
||||
"epsilon_start": 0.95,
|
||||
"epsilon_end": 0.01,
|
||||
"epsilon_decay": 500,
|
||||
"lr": 0.0001,
|
||||
"memory_capacity": 100000,
|
||||
"batch_size": 64,
|
||||
"target_update": 2,
|
||||
"hidden_dim": 256,
|
||||
"device": "cuda",
|
||||
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DoubleDQN/outputs/CartPole-v0/20220721-215416/results/",
|
||||
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DoubleDQN/outputs/CartPole-v0/20220721-215416/models/",
|
||||
"save_fig": true
|
||||
}
|
||||
|
After Width: | Height: | Size: 44 KiB |
|
After Width: | Height: | Size: 44 KiB |
138
projects/codes/DoubleDQN/task0.py
Normal file
@@ -0,0 +1,138 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-11-07 18:10:37
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-07-21 21:52:31
|
||||
Discription:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
import argparse
|
||||
|
||||
from common.utils import save_results,make_dir
|
||||
from common.utils import plot_rewards,save_args
|
||||
from DoubleDQN.double_dqn import DoubleDQN
|
||||
|
||||
def get_args():
|
||||
""" Hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='DoubleDQN',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
|
||||
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
|
||||
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=64,type=int)
|
||||
parser.add_argument('--target_update',default=2,type=int)
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results/' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models/' ) # path to save models
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env_name)
|
||||
env.seed(seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = DoubleDQN(n_states,n_actions,cfg)
|
||||
return env,agent
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print('Start training!')
|
||||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, reward, next_state, done)
|
||||
state = next_state
|
||||
agent.update()
|
||||
if done:
|
||||
break
|
||||
if i_ep % cfg.target_update == 0:
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
if (i_ep+1)%10 == 0:
|
||||
print(f'Env:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}')
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('Finish training!')
|
||||
return {'rewards':rewards,'ma_rewards':ma_rewards}
|
||||
|
||||
def test(cfg,env,agent):
|
||||
print('Start testing')
|
||||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||||
############# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0 ###############
|
||||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||||
################################################################################
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
|
||||
for i_ep in range(cfg.test_eps):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
while True:
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"Epside:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.1f}")
|
||||
print('Finish testing!')
|
||||
return {'rewards':rewards,'ma_rewards':ma_rewards}
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
print(cfg.device)
|
||||
# training
|
||||
env,agent = env_agent_config(cfg,seed=1)
|
||||
res_dic = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
save_args(cfg)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(res_dic, tag='train',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train")
|
||||
# testing
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=cfg.model_path)
|
||||
res_dic = test(cfg,env,agent)
|
||||
save_results(res_dic, tag='test',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="test")
|
||||
BIN
projects/codes/DuelingDQN/assets/task0_train_20211112021954.png
Normal file
|
After Width: | Height: | Size: 121 KiB |
418
projects/codes/DuelingDQN/task0_train.ipynb
Normal file
167
projects/codes/GAE/task0_train.py
Normal file
@@ -0,0 +1,167 @@
|
||||
import math
|
||||
import random
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.nn.functional as F
|
||||
from torch.distributions import Normal
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加父路径到系统路径sys.path
|
||||
|
||||
use_cuda = torch.cuda.is_available()
|
||||
device = torch.device("cuda" if use_cuda else "cpu")
|
||||
|
||||
from common.multiprocessing_env import SubprocVecEnv
|
||||
|
||||
num_envs = 16
|
||||
env_name = "Pendulum-v0"
|
||||
|
||||
def make_env():
|
||||
def _thunk():
|
||||
env = gym.make(env_name)
|
||||
return env
|
||||
|
||||
return _thunk
|
||||
|
||||
envs = [make_env() for i in range(num_envs)]
|
||||
envs = SubprocVecEnv(envs)
|
||||
|
||||
env = gym.make(env_name)
|
||||
|
||||
def init_weights(m):
|
||||
if isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, mean=0., std=0.1)
|
||||
nn.init.constant_(m.bias, 0.1)
|
||||
|
||||
class ActorCritic(nn.Module):
|
||||
def __init__(self, num_inputs, num_outputs, hidden_size, std=0.0):
|
||||
super(ActorCritic, self).__init__()
|
||||
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(num_inputs, hidden_size),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_size, 1)
|
||||
)
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(num_inputs, hidden_size),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_size, num_outputs),
|
||||
)
|
||||
self.log_std = nn.Parameter(torch.ones(1, num_outputs) * std)
|
||||
|
||||
self.apply(init_weights)
|
||||
|
||||
def forward(self, x):
|
||||
value = self.critic(x)
|
||||
mu = self.actor(x)
|
||||
std = self.log_std.exp().expand_as(mu)
|
||||
dist = Normal(mu, std)
|
||||
return dist, value
|
||||
|
||||
|
||||
def plot(frame_idx, rewards):
|
||||
plt.figure(figsize=(20,5))
|
||||
plt.subplot(131)
|
||||
plt.title('frame %s. reward: %s' % (frame_idx, rewards[-1]))
|
||||
plt.plot(rewards)
|
||||
plt.show()
|
||||
|
||||
def test_env(vis=False):
|
||||
state = env.reset()
|
||||
if vis: env.render()
|
||||
done = False
|
||||
total_reward = 0
|
||||
while not done:
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||
dist, _ = model(state)
|
||||
next_state, reward, done, _ = env.step(dist.sample().cpu().numpy()[0])
|
||||
state = next_state
|
||||
if vis: env.render()
|
||||
total_reward += reward
|
||||
return total_reward
|
||||
|
||||
def compute_gae(next_value, rewards, masks, values, gamma=0.99, tau=0.95):
|
||||
values = values + [next_value]
|
||||
gae = 0
|
||||
returns = []
|
||||
for step in reversed(range(len(rewards))):
|
||||
delta = rewards[step] + gamma * values[step + 1] * masks[step] - values[step]
|
||||
gae = delta + gamma * tau * masks[step] * gae
|
||||
returns.insert(0, gae + values[step])
|
||||
return returns
|
||||
|
||||
num_inputs = envs.observation_space.shape[0]
|
||||
num_outputs = envs.action_space.shape[0]
|
||||
|
||||
#Hyper params:
|
||||
hidden_size = 256
|
||||
lr = 3e-2
|
||||
num_steps = 20
|
||||
|
||||
model = ActorCritic(num_inputs, num_outputs, hidden_size).to(device)
|
||||
optimizer = optim.Adam(model.parameters())
|
||||
|
||||
max_frames = 100000
|
||||
frame_idx = 0
|
||||
test_rewards = []
|
||||
|
||||
state = envs.reset()
|
||||
|
||||
while frame_idx < max_frames:
|
||||
|
||||
log_probs = []
|
||||
values = []
|
||||
rewards = []
|
||||
masks = []
|
||||
entropy = 0
|
||||
|
||||
for _ in range(num_steps):
|
||||
state = torch.FloatTensor(state).to(device)
|
||||
dist, value = model(state)
|
||||
|
||||
action = dist.sample()
|
||||
next_state, reward, done, _ = envs.step(action.cpu().numpy())
|
||||
|
||||
log_prob = dist.log_prob(action)
|
||||
entropy += dist.entropy().mean()
|
||||
|
||||
log_probs.append(log_prob)
|
||||
values.append(value)
|
||||
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device))
|
||||
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device))
|
||||
|
||||
state = next_state
|
||||
frame_idx += 1
|
||||
|
||||
if frame_idx % 1000 == 0:
|
||||
test_rewards.append(np.mean([test_env() for _ in range(10)]))
|
||||
print(test_rewards[-1])
|
||||
# plot(frame_idx, test_rewards)
|
||||
|
||||
next_state = torch.FloatTensor(next_state).to(device)
|
||||
_, next_value = model(next_state)
|
||||
returns = compute_gae(next_value, rewards, masks, values)
|
||||
|
||||
log_probs = torch.cat(log_probs)
|
||||
returns = torch.cat(returns).detach()
|
||||
values = torch.cat(values)
|
||||
|
||||
advantage = returns - values
|
||||
|
||||
actor_loss = -(log_probs * advantage.detach()).mean()
|
||||
critic_loss = advantage.pow(2).mean()
|
||||
|
||||
loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
13
projects/codes/HierarchicalDQN/README.md
Normal file
@@ -0,0 +1,13 @@
|
||||
# Hierarchical DQN
|
||||
|
||||
## 原理简介
|
||||
|
||||
Hierarchical DQN是一种分层强化学习方法,与DQN相比增加了一个meta controller,
|
||||
|
||||

|
||||
|
||||
即学习时,meta controller每次会生成一个goal,然后controller或者说下面的actor就会达到这个goal,直到done为止。这就相当于给agent增加了一个队长,队长擅长制定局部目标,指导agent前行,这样应对一些每回合步数较长或者稀疏奖励的问题会有所帮助。
|
||||
|
||||
## 伪代码
|
||||
|
||||

|
||||
154
projects/codes/HierarchicalDQN/agent.py
Normal file
@@ -0,0 +1,154 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-24 22:18:18
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-05-04 22:39:34
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
import random,math
|
||||
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity # 经验回放的容量
|
||||
self.buffer = [] # 缓冲区
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
|
||||
'''
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
|
||||
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
''' 返回当前存储的量
|
||||
'''
|
||||
return len(self.buffer)
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, input_dim,output_dim,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
input_dim: 输入的特征数即环境的状态维度
|
||||
output_dim: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(input_dim, hidden_dim) # 输入层
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||||
self.fc3 = nn.Linear(hidden_dim, output_dim) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
|
||||
class HierarchicalDQN:
|
||||
def __init__(self,n_states,n_actions,cfg):
|
||||
self.n_states = n_states
|
||||
self.n_actions = n_actions
|
||||
self.gamma = cfg.gamma
|
||||
self.device = cfg.device
|
||||
self.batch_size = cfg.batch_size
|
||||
self.frame_idx = 0 # 用于epsilon的衰减计数
|
||||
self.epsilon = lambda frame_idx: cfg.epsilon_end + (cfg.epsilon_start - cfg.epsilon_end ) * math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.policy_net = MLP(2*n_states, n_actions,cfg.hidden_dim).to(self.device)
|
||||
self.meta_policy_net = MLP(n_states, n_states,cfg.hidden_dim).to(self.device)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(),lr=cfg.lr)
|
||||
self.meta_optimizer = optim.Adam(self.meta_policy_net.parameters(),lr=cfg.lr)
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||
self.meta_memory = ReplayBuffer(cfg.memory_capacity)
|
||||
self.loss_numpy = 0
|
||||
self.meta_loss_numpy = 0
|
||||
self.losses = []
|
||||
self.meta_losses = []
|
||||
def to_onehot(self,x):
|
||||
oh = np.zeros(self.n_states)
|
||||
oh[x - 1] = 1.
|
||||
return oh
|
||||
def set_goal(self,state):
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
with torch.no_grad():
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
|
||||
goal = self.meta_policy_net(state).max(1)[1].item()
|
||||
else:
|
||||
goal = random.randrange(self.n_states)
|
||||
return goal
|
||||
def choose_action(self,state):
|
||||
self.frame_idx += 1
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
with torch.no_grad():
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
|
||||
q_value = self.policy_net(state)
|
||||
action = q_value.max(1)[1].item()
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
def update(self):
|
||||
self.update_policy()
|
||||
self.update_meta()
|
||||
def update_policy(self):
|
||||
if self.batch_size > len(self.memory):
|
||||
return
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size)
|
||||
state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch,device=self.device,dtype=torch.int64).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch,device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch),device=self.device)
|
||||
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1)
|
||||
next_state_values = self.policy_net(next_state_batch).max(1)[0].detach()
|
||||
expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch)
|
||||
loss = nn.MSELoss()(q_values, expected_q_values)
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step()
|
||||
self.loss_numpy = loss.detach().cpu().numpy()
|
||||
self.losses.append(self.loss_numpy)
|
||||
def update_meta(self):
|
||||
if self.batch_size > len(self.meta_memory):
|
||||
return
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.meta_memory.sample(self.batch_size)
|
||||
state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch,device=self.device,dtype=torch.int64).unsqueeze(1)
|
||||
reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float)
|
||||
next_state_batch = torch.tensor(next_state_batch,device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch),device=self.device)
|
||||
q_values = self.meta_policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1)
|
||||
next_state_values = self.meta_policy_net(next_state_batch).max(1)[0].detach()
|
||||
expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch)
|
||||
meta_loss = nn.MSELoss()(q_values, expected_q_values)
|
||||
self.meta_optimizer.zero_grad()
|
||||
meta_loss.backward()
|
||||
for param in self.meta_policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.meta_optimizer.step()
|
||||
self.meta_loss_numpy = meta_loss.detach().cpu().numpy()
|
||||
self.meta_losses.append(self.meta_loss_numpy)
|
||||
|
||||
def save(self, path):
|
||||
torch.save(self.policy_net.state_dict(), path+'policy_checkpoint.pth')
|
||||
torch.save(self.meta_policy_net.state_dict(), path+'meta_checkpoint.pth')
|
||||
|
||||
def load(self, path):
|
||||
self.policy_net.load_state_dict(torch.load(path+'policy_checkpoint.pth'))
|
||||
self.meta_policy_net.load_state_dict(torch.load(path+'meta_checkpoint.pth'))
|
||||
|
||||
|
||||
|
||||
|
||||
|
After Width: | Height: | Size: 112 KiB |
|
After Width: | Height: | Size: 311 KiB |
|
After Width: | Height: | Size: 62 KiB |
|
After Width: | Height: | Size: 77 KiB |
88
projects/codes/HierarchicalDQN/task0.py
Normal file
@@ -0,0 +1,88 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-29 10:37:32
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-05-04 22:35:56
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys
|
||||
import os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
|
||||
import datetime
|
||||
import numpy as np
|
||||
import torch
|
||||
import gym
|
||||
|
||||
from common.utils import save_results,make_dir
|
||||
from common.utils import plot_rewards
|
||||
from HierarchicalDQN.agent import HierarchicalDQN
|
||||
from HierarchicalDQN.train import train,test
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
algo_name = "Hierarchical DQN" # 算法名称
|
||||
env_name = 'CartPole-v0' # 环境名称
|
||||
class HierarchicalDQNConfig:
|
||||
def __init__(self):
|
||||
self.algo_name = algo_name # 算法名称
|
||||
self.env_name = env_name # 环境名称
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.train_eps = 300 # 训练的episode数目
|
||||
self.test_eps = 50 # 测试的episode数目
|
||||
self.gamma = 0.99
|
||||
self.epsilon_start = 1 # start epsilon of e-greedy policy
|
||||
self.epsilon_end = 0.01
|
||||
self.epsilon_decay = 200
|
||||
self.lr = 0.0001 # learning rate
|
||||
self.memory_capacity = 10000 # Replay Memory capacity
|
||||
self.batch_size = 32
|
||||
self.target_update = 2 # 目标网络的更新频率
|
||||
self.hidden_dim = 256 # 网络隐藏层
|
||||
class PlotConfig:
|
||||
''' 绘图相关参数设置
|
||||
'''
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.algo_name = algo_name # 算法名称
|
||||
self.env_name = env_name # 环境名称
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/results/' # 保存结果的路径
|
||||
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env_name)
|
||||
env.seed(seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = HierarchicalDQN(n_states,n_actions,cfg)
|
||||
return env,agent
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = HierarchicalDQNConfig()
|
||||
plot_cfg = PlotConfig()
|
||||
# 训练
|
||||
env, agent = env_agent_config(cfg, seed=1)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=plot_cfg.model_path) # 保存模型
|
||||
save_results(rewards, ma_rewards, tag='train',
|
||||
path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
||||
# 测试
|
||||
env, agent = env_agent_config(cfg, seed=10)
|
||||
agent.load(path=plot_cfg.model_path) # 导入模型
|
||||
rewards, ma_rewards = test(cfg, env, agent)
|
||||
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果
|
||||
|
||||
77
projects/codes/HierarchicalDQN/train.py
Normal file
@@ -0,0 +1,77 @@
|
||||
import sys
|
||||
import os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
|
||||
import numpy as np
|
||||
|
||||
def train(cfg, env, agent):
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
while not done:
|
||||
goal = agent.set_goal(state)
|
||||
onehot_goal = agent.to_onehot(goal)
|
||||
meta_state = state
|
||||
extrinsic_reward = 0
|
||||
while not done and goal != np.argmax(state):
|
||||
goal_state = np.concatenate([state, onehot_goal])
|
||||
action = agent.choose_action(goal_state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
extrinsic_reward += reward
|
||||
intrinsic_reward = 1.0 if goal == np.argmax(
|
||||
next_state) else 0.0
|
||||
agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate(
|
||||
[next_state, onehot_goal]), done)
|
||||
state = next_state
|
||||
agent.update()
|
||||
if (i_ep+1)%10 == 0:
|
||||
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward},Loss:{agent.loss_numpy:.2f}, Meta_Loss:{agent.meta_loss_numpy:.2f}')
|
||||
agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done)
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('完成训练!')
|
||||
return rewards, ma_rewards
|
||||
|
||||
def test(cfg, env, agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
while not done:
|
||||
goal = agent.set_goal(state)
|
||||
onehot_goal = agent.to_onehot(goal)
|
||||
extrinsic_reward = 0
|
||||
while not done and goal != np.argmax(state):
|
||||
goal_state = np.concatenate([state, onehot_goal])
|
||||
action = agent.choose_action(goal_state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
extrinsic_reward += reward
|
||||
state = next_state
|
||||
agent.update()
|
||||
if (i_ep+1)%10 == 0:
|
||||
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward},Loss:{agent.loss_numpy:.2f}, Meta_Loss:{agent.meta_loss_numpy:.2f}')
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('完成训练!')
|
||||
return rewards, ma_rewards
|
||||
5
projects/codes/MonteCarlo/README.md
Normal file
@@ -0,0 +1,5 @@
|
||||
# *On-Policy First-Visit MC Control*
|
||||
|
||||
### 伪代码
|
||||
|
||||

|
||||
65
projects/codes/MonteCarlo/agent.py
Normal file
@@ -0,0 +1,65 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-12 16:14:34
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-05-05 16:58:39
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import numpy as np
|
||||
from collections import defaultdict
|
||||
import torch
|
||||
import dill
|
||||
|
||||
class FisrtVisitMC:
|
||||
''' On-Policy First-Visit MC Control
|
||||
'''
|
||||
def __init__(self,n_actions,cfg):
|
||||
self.n_actions = n_actions
|
||||
self.epsilon = cfg.epsilon
|
||||
self.gamma = cfg.gamma
|
||||
self.Q_table = defaultdict(lambda: np.zeros(n_actions))
|
||||
self.returns_sum = defaultdict(float) # sum of returns
|
||||
self.returns_count = defaultdict(float)
|
||||
|
||||
def choose_action(self,state):
|
||||
''' e-greed policy '''
|
||||
if state in self.Q_table.keys():
|
||||
best_action = np.argmax(self.Q_table[state])
|
||||
action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions
|
||||
action_probs[best_action] += (1.0 - self.epsilon)
|
||||
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
|
||||
else:
|
||||
action = np.random.randint(0,self.n_actions)
|
||||
return action
|
||||
def update(self,one_ep_transition):
|
||||
# Find all (state, action) pairs we've visited in this one_ep_transition
|
||||
# We convert each state to a tuple so that we can use it as a dict key
|
||||
sa_in_episode = set([(tuple(x[0]), x[1]) for x in one_ep_transition])
|
||||
for state, action in sa_in_episode:
|
||||
sa_pair = (state, action)
|
||||
# Find the first occurence of the (state, action) pair in the one_ep_transition
|
||||
first_occurence_idx = next(i for i,x in enumerate(one_ep_transition)
|
||||
if x[0] == state and x[1] == action)
|
||||
# Sum up all rewards since the first occurance
|
||||
G = sum([x[2]*(self.gamma**i) for i,x in enumerate(one_ep_transition[first_occurence_idx:])])
|
||||
# Calculate average return for this state over all sampled episodes
|
||||
self.returns_sum[sa_pair] += G
|
||||
self.returns_count[sa_pair] += 1.0
|
||||
self.Q_table[state][action] = self.returns_sum[sa_pair] / self.returns_count[sa_pair]
|
||||
def save(self,path):
|
||||
'''把 Q表格 的数据保存到文件中
|
||||
'''
|
||||
torch.save(
|
||||
obj=self.Q_table,
|
||||
f=path+"Q_table",
|
||||
pickle_module=dill
|
||||
)
|
||||
|
||||
def load(self, path):
|
||||
'''从文件中读取数据到 Q表格
|
||||
'''
|
||||
self.Q_table =torch.load(f=path+"Q_table",pickle_module=dill)
|
||||
BIN
projects/codes/MonteCarlo/assets/mc_control_algo.png
Normal file
|
After Width: | Height: | Size: 180 KiB |
|
After Width: | Height: | Size: 79 KiB |
|
After Width: | Height: | Size: 38 KiB |
118
projects/codes/MonteCarlo/task0_train.py
Normal file
@@ -0,0 +1,118 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-11 14:26:44
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-05-05 17:27:50
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path = os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import torch
|
||||
import datetime
|
||||
|
||||
from common.utils import save_results,make_dir
|
||||
from common.plot import plot_rewards
|
||||
from MonteCarlo.agent import FisrtVisitMC
|
||||
from envs.racetrack_env import RacetrackEnv
|
||||
|
||||
curr_time = datetime.datetime.now().strftime(
|
||||
"%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
class MCConfig:
|
||||
def __init__(self):
|
||||
self.algo = "MC" # name of algo
|
||||
self.env = 'Racetrack'
|
||||
self.result_path = curr_path+"/outputs/" + self.env + \
|
||||
'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/outputs/" + self.env + \
|
||||
'/'+curr_time+'/models/' # path to save models
|
||||
# epsilon: The probability to select a random action .
|
||||
self.epsilon = 0.15
|
||||
self.gamma = 0.9 # gamma: Gamma discount factor.
|
||||
self.train_eps = 200
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # check gpu
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = RacetrackEnv()
|
||||
n_actions = 9
|
||||
agent = FisrtVisitMC(n_actions, cfg)
|
||||
return env,agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
print('Start to eval !')
|
||||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||||
rewards = []
|
||||
ma_rewards = [] # moving average rewards
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
one_ep_transition = []
|
||||
while True:
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done = env.step(action)
|
||||
ep_reward += reward
|
||||
one_ep_transition.append((state, action, reward))
|
||||
state = next_state
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
agent.update(one_ep_transition)
|
||||
if (i_ep+1) % 10 == 0:
|
||||
print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}")
|
||||
print('Complete training!')
|
||||
return rewards, ma_rewards
|
||||
|
||||
def eval(cfg, env, agent):
|
||||
print('Start to eval !')
|
||||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||||
rewards = []
|
||||
ma_rewards = [] # moving average rewards
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
while True:
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done = env.step(action)
|
||||
ep_reward += reward
|
||||
state = next_state
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
if (i_ep+1) % 10 == 0:
|
||||
print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}")
|
||||
return rewards, ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = MCConfig()
|
||||
|
||||
# train
|
||||
env,agent = env_agent_config(cfg,seed=1)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
||||
plot_rewards(rewards, ma_rewards, tag="train",
|
||||
algo=cfg.algo, path=cfg.result_path)
|
||||
# eval
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=cfg.model_path)
|
||||
rewards,ma_rewards = eval(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
52
projects/codes/NoisyDQN/noisy_dqn.py
Normal file
@@ -0,0 +1,52 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
class NoisyLinear(nn.Module):
|
||||
def __init__(self, input_dim, output_dim, std_init=0.4):
|
||||
super(NoisyLinear, self).__init__()
|
||||
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
self.std_init = std_init
|
||||
|
||||
self.weight_mu = nn.Parameter(torch.FloatTensor(output_dim, input_dim))
|
||||
self.weight_sigma = nn.Parameter(torch.FloatTensor(output_dim, input_dim))
|
||||
self.register_buffer('weight_epsilon', torch.FloatTensor(output_dim, input_dim))
|
||||
|
||||
self.bias_mu = nn.Parameter(torch.FloatTensor(output_dim))
|
||||
self.bias_sigma = nn.Parameter(torch.FloatTensor(output_dim))
|
||||
self.register_buffer('bias_epsilon', torch.FloatTensor(output_dim))
|
||||
|
||||
self.reset_parameters()
|
||||
self.reset_noise()
|
||||
|
||||
def forward(self, x):
|
||||
if self.training:
|
||||
weight = self.weight_mu + self.weight_sigma.mul( (self.weight_epsilon))
|
||||
bias = self.bias_mu + self.bias_sigma.mul(Variable(self.bias_epsilon))
|
||||
else:
|
||||
weight = self.weight_mu
|
||||
bias = self.bias_mu
|
||||
|
||||
return F.linear(x, weight, bias)
|
||||
|
||||
def reset_parameters(self):
|
||||
mu_range = 1 / math.sqrt(self.weight_mu.size(1))
|
||||
|
||||
self.weight_mu.data.uniform_(-mu_range, mu_range)
|
||||
self.weight_sigma.data.fill_(self.std_init / math.sqrt(self.weight_sigma.size(1)))
|
||||
|
||||
self.bias_mu.data.uniform_(-mu_range, mu_range)
|
||||
self.bias_sigma.data.fill_(self.std_init / math.sqrt(self.bias_sigma.size(0)))
|
||||
|
||||
def reset_noise(self):
|
||||
epsilon_in = self._scale_noise(self.input_dim)
|
||||
epsilon_out = self._scale_noise(self.output_dim)
|
||||
|
||||
self.weight_epsilon.copy_(epsilon_out.ger(epsilon_in))
|
||||
self.bias_epsilon.copy_(self._scale_noise(self.output_dim))
|
||||
|
||||
def _scale_noise(self, size):
|
||||
x = torch.randn(size)
|
||||
x = x.sign().mul(x.abs().sqrt())
|
||||
return x
|
||||
25
projects/codes/NoisyDQN/task0_train.ipynb
Normal file
@@ -0,0 +1,25 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys\n",
|
||||
"from pathlib import Path\n",
|
||||
"curr_path = str(Path().absolute()) # 当前路径\n",
|
||||
"parent_path = str(Path().absolute().parent) # 父路径\n",
|
||||
"sys.path.append(parent_path) # 添加路径到系统路径"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
142
projects/codes/PPO/README.md
Normal file
@@ -0,0 +1,142 @@
|
||||
## 原理简介
|
||||
|
||||
PPO是一种on-policy算法,具有较好的性能,其前身是TRPO算法,也是policy gradient算法的一种,它是现在 OpenAI 默认的强化学习算法,具体原理可参考[PPO算法讲解](https://datawhalechina.github.io/easy-rl/#/chapter5/chapter5)。PPO算法主要有两个变种,一个是结合KL penalty的,一个是用了clip方法,本文实现的是后者即```PPO-clip```。
|
||||
## 伪代码
|
||||
要实现必先了解伪代码,伪代码如下:
|
||||

|
||||
这是谷歌找到的一张比较适合的图,本人比较懒就没有修改,上面的```k```就是第```k```个episode,第六步是用随机梯度下降的方法优化,这里的损失函数(即```argmax```后面的部分)可能有点难理解,可参考[PPO paper](https://arxiv.org/abs/1707.06347),如下:
|
||||

|
||||
第七步就是一个平方损失函数,即实际回报与期望回报的差平方。
|
||||
## 代码实战
|
||||
[点击查看完整代码](https://github.com/JohnJim0816/rl-tutorials/tree/master/PPO)
|
||||
### PPOmemory
|
||||
首先第三步需要搜集一条轨迹信息,我们可以定义一个```PPOmemory```来存储相关信息:
|
||||
```python
|
||||
class PPOMemory:
|
||||
def __init__(self, batch_size):
|
||||
self.states = []
|
||||
self.probs = []
|
||||
self.vals = []
|
||||
self.actions = []
|
||||
self.rewards = []
|
||||
self.dones = []
|
||||
self.batch_size = batch_size
|
||||
def sample(self):
|
||||
batch_step = np.arange(0, len(self.states), self.batch_size)
|
||||
indices = np.arange(len(self.states), dtype=np.int64)
|
||||
np.random.shuffle(indices)
|
||||
batches = [indices[i:i+self.batch_size] for i in batch_step]
|
||||
return np.array(self.states),\
|
||||
np.array(self.actions),\
|
||||
np.array(self.probs),\
|
||||
np.array(self.vals),\
|
||||
np.array(self.rewards),\
|
||||
np.array(self.dones),\
|
||||
batches
|
||||
|
||||
def push(self, state, action, probs, vals, reward, done):
|
||||
self.states.append(state)
|
||||
self.actions.append(action)
|
||||
self.probs.append(probs)
|
||||
self.vals.append(vals)
|
||||
self.rewards.append(reward)
|
||||
self.dones.append(done)
|
||||
|
||||
def clear(self):
|
||||
self.states = []
|
||||
self.probs = []
|
||||
self.actions = []
|
||||
self.rewards = []
|
||||
self.dones = []
|
||||
self.vals = []
|
||||
```
|
||||
这里的push函数就是将得到的相关量放入memory中,sample就是随机采样出来,方便第六步的随机梯度下降。
|
||||
### PPO model
|
||||
model就是actor和critic两个网络了:
|
||||
```python
|
||||
import torch.nn as nn
|
||||
from torch.distributions.categorical import Categorical
|
||||
class Actor(nn.Module):
|
||||
def __init__(self,n_states, n_actions,
|
||||
hidden_dim=256):
|
||||
super(Actor, self).__init__()
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, n_actions),
|
||||
nn.Softmax(dim=-1)
|
||||
)
|
||||
def forward(self, state):
|
||||
dist = self.actor(state)
|
||||
dist = Categorical(dist)
|
||||
return dist
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_states,hidden_dim=256):
|
||||
super(Critic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
def forward(self, state):
|
||||
value = self.critic(state)
|
||||
return value
|
||||
```
|
||||
这里Actor就是得到一个概率分布(Categorica,也可以是别的分布,可以搜索torch distributionsl),critc根据当前状态得到一个值,这里的输入维度可以是```n_states+n_actions```,即将action信息也纳入critic网络中,这样会更好一些,感兴趣的小伙伴可以试试。
|
||||
|
||||
### PPO update
|
||||
定义一个update函数主要实现伪代码中的第六步和第七步:
|
||||
```python
|
||||
def update(self):
|
||||
for _ in range(self.n_epochs):
|
||||
state_arr, action_arr, old_prob_arr, vals_arr,\
|
||||
reward_arr, dones_arr, batches = \
|
||||
self.memory.sample()
|
||||
values = vals_arr
|
||||
### compute advantage ###
|
||||
advantage = np.zeros(len(reward_arr), dtype=np.float32)
|
||||
for t in range(len(reward_arr)-1):
|
||||
discount = 1
|
||||
a_t = 0
|
||||
for k in range(t, len(reward_arr)-1):
|
||||
a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*\
|
||||
(1-int(dones_arr[k])) - values[k])
|
||||
discount *= self.gamma*self.gae_lambda
|
||||
advantage[t] = a_t
|
||||
advantage = torch.tensor(advantage).to(self.device)
|
||||
### SGD ###
|
||||
values = torch.tensor(values).to(self.device)
|
||||
for batch in batches:
|
||||
states = torch.tensor(state_arr[batch], dtype=torch.float).to(self.device)
|
||||
old_probs = torch.tensor(old_prob_arr[batch]).to(self.device)
|
||||
actions = torch.tensor(action_arr[batch]).to(self.device)
|
||||
dist = self.actor(states)
|
||||
critic_value = self.critic(states)
|
||||
critic_value = torch.squeeze(critic_value)
|
||||
new_probs = dist.log_prob(actions)
|
||||
prob_ratio = new_probs.exp() / old_probs.exp()
|
||||
weighted_probs = advantage[batch] * prob_ratio
|
||||
weighted_clipped_probs = torch.clamp(prob_ratio, 1-self.policy_clip,
|
||||
1+self.policy_clip)*advantage[batch]
|
||||
actor_loss = -torch.min(weighted_probs, weighted_clipped_probs).mean()
|
||||
returns = advantage[batch] + values[batch]
|
||||
critic_loss = (returns-critic_value)**2
|
||||
critic_loss = critic_loss.mean()
|
||||
total_loss = actor_loss + 0.5*critic_loss
|
||||
self.actor_optimizer.zero_grad()
|
||||
self.critic_optimizer.zero_grad()
|
||||
total_loss.backward()
|
||||
self.actor_optimizer.step()
|
||||
self.critic_optimizer.step()
|
||||
self.memory.clear()
|
||||
```
|
||||
该部分首先从memory中提取搜集到的轨迹信息,然后计算gae,即advantage,接着使用随机梯度下降更新网络,最后清除memory以便搜集下一条轨迹信息。
|
||||
|
||||
最后实现效果如下:
|
||||

|
||||
BIN
projects/codes/PPO/assets/20210323154236878.png
Normal file
|
After Width: | Height: | Size: 13 KiB |
|
After Width: | Height: | Size: 75 KiB |
|
After Width: | Height: | Size: 37 KiB |
@@ -0,0 +1,20 @@
|
||||
{
|
||||
"algo_name": "PPO",
|
||||
"env_name": "CartPole-v0",
|
||||
"continuous": false,
|
||||
"train_eps": 200,
|
||||
"test_eps": 20,
|
||||
"gamma": 0.99,
|
||||
"batch_size": 5,
|
||||
"n_epochs": 4,
|
||||
"actor_lr": 0.0003,
|
||||
"critic_lr": 0.0003,
|
||||
"gae_lambda": 0.95,
|
||||
"policy_clip": 0.2,
|
||||
"update_fre": 20,
|
||||
"hidden_dim": 256,
|
||||
"device": "cpu",
|
||||
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\PPO/outputs/CartPole-v0/20220731-233512/results/",
|
||||
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\PPO/outputs/CartPole-v0/20220731-233512/models/",
|
||||
"save_fig": true
|
||||
}
|
||||
|
After Width: | Height: | Size: 27 KiB |
|
After Width: | Height: | Size: 65 KiB |
162
projects/codes/PPO/ppo2.py
Normal file
@@ -0,0 +1,162 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-23 15:17:42
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-12-31 19:38:33
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import torch.nn as nn
|
||||
from torch.distributions.categorical import Categorical
|
||||
class PPOMemory:
|
||||
def __init__(self, batch_size):
|
||||
self.states = []
|
||||
self.probs = []
|
||||
self.vals = []
|
||||
self.actions = []
|
||||
self.rewards = []
|
||||
self.dones = []
|
||||
self.batch_size = batch_size
|
||||
def sample(self):
|
||||
batch_step = np.arange(0, len(self.states), self.batch_size)
|
||||
indices = np.arange(len(self.states), dtype=np.int64)
|
||||
np.random.shuffle(indices)
|
||||
batches = [indices[i:i+self.batch_size] for i in batch_step]
|
||||
return np.array(self.states),np.array(self.actions),np.array(self.probs),\
|
||||
np.array(self.vals),np.array(self.rewards),np.array(self.dones),batches
|
||||
|
||||
def push(self, state, action, probs, vals, reward, done):
|
||||
self.states.append(state)
|
||||
self.actions.append(action)
|
||||
self.probs.append(probs)
|
||||
self.vals.append(vals)
|
||||
self.rewards.append(reward)
|
||||
self.dones.append(done)
|
||||
|
||||
def clear(self):
|
||||
self.states = []
|
||||
self.probs = []
|
||||
self.actions = []
|
||||
self.rewards = []
|
||||
self.dones = []
|
||||
self.vals = []
|
||||
class Actor(nn.Module):
|
||||
def __init__(self,n_states, n_actions,
|
||||
hidden_dim):
|
||||
super(Actor, self).__init__()
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, n_actions),
|
||||
nn.Softmax(dim=-1)
|
||||
)
|
||||
def forward(self, state):
|
||||
dist = self.actor(state)
|
||||
dist = Categorical(dist)
|
||||
return dist
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_states,hidden_dim):
|
||||
super(Critic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
def forward(self, state):
|
||||
value = self.critic(state)
|
||||
return value
|
||||
class PPO:
|
||||
def __init__(self, n_states, n_actions,cfg):
|
||||
self.gamma = cfg.gamma
|
||||
self.continuous = cfg.continuous
|
||||
self.policy_clip = cfg.policy_clip
|
||||
self.n_epochs = cfg.n_epochs
|
||||
self.gae_lambda = cfg.gae_lambda
|
||||
self.device = cfg.device
|
||||
self.actor = Actor(n_states, n_actions,cfg.hidden_dim).to(self.device)
|
||||
self.critic = Critic(n_states,cfg.hidden_dim).to(self.device)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
|
||||
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.critic_lr)
|
||||
self.memory = PPOMemory(cfg.batch_size)
|
||||
self.loss = 0
|
||||
|
||||
def choose_action(self, state):
|
||||
state = np.array([state]) # 先转成数组再转tensor更高效
|
||||
state = torch.tensor(state, dtype=torch.float).to(self.device)
|
||||
dist = self.actor(state)
|
||||
value = self.critic(state)
|
||||
action = dist.sample()
|
||||
probs = torch.squeeze(dist.log_prob(action)).item()
|
||||
if self.continuous:
|
||||
action = torch.tanh(action)
|
||||
else:
|
||||
action = torch.squeeze(action).item()
|
||||
value = torch.squeeze(value).item()
|
||||
return action, probs, value
|
||||
|
||||
def update(self):
|
||||
for _ in range(self.n_epochs):
|
||||
state_arr, action_arr, old_prob_arr, vals_arr,reward_arr, dones_arr, batches = self.memory.sample()
|
||||
values = vals_arr[:]
|
||||
### compute advantage ###
|
||||
advantage = np.zeros(len(reward_arr), dtype=np.float32)
|
||||
for t in range(len(reward_arr)-1):
|
||||
discount = 1
|
||||
a_t = 0
|
||||
for k in range(t, len(reward_arr)-1):
|
||||
a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*\
|
||||
(1-int(dones_arr[k])) - values[k])
|
||||
discount *= self.gamma*self.gae_lambda
|
||||
advantage[t] = a_t
|
||||
advantage = torch.tensor(advantage).to(self.device)
|
||||
### SGD ###
|
||||
values = torch.tensor(values).to(self.device)
|
||||
for batch in batches:
|
||||
states = torch.tensor(state_arr[batch], dtype=torch.float).to(self.device)
|
||||
old_probs = torch.tensor(old_prob_arr[batch]).to(self.device)
|
||||
actions = torch.tensor(action_arr[batch]).to(self.device)
|
||||
dist = self.actor(states)
|
||||
critic_value = self.critic(states)
|
||||
critic_value = torch.squeeze(critic_value)
|
||||
new_probs = dist.log_prob(actions)
|
||||
prob_ratio = new_probs.exp() / old_probs.exp()
|
||||
weighted_probs = advantage[batch] * prob_ratio
|
||||
weighted_clipped_probs = torch.clamp(prob_ratio, 1-self.policy_clip,
|
||||
1+self.policy_clip)*advantage[batch]
|
||||
actor_loss = -torch.min(weighted_probs, weighted_clipped_probs).mean()
|
||||
returns = advantage[batch] + values[batch]
|
||||
critic_loss = (returns-critic_value)**2
|
||||
critic_loss = critic_loss.mean()
|
||||
total_loss = actor_loss + 0.5*critic_loss
|
||||
self.loss = total_loss
|
||||
self.actor_optimizer.zero_grad()
|
||||
self.critic_optimizer.zero_grad()
|
||||
total_loss.backward()
|
||||
self.actor_optimizer.step()
|
||||
self.critic_optimizer.step()
|
||||
self.memory.clear()
|
||||
def save(self,path):
|
||||
actor_checkpoint = os.path.join(path, 'ppo_actor.pt')
|
||||
critic_checkpoint= os.path.join(path, 'ppo_critic.pt')
|
||||
torch.save(self.actor.state_dict(), actor_checkpoint)
|
||||
torch.save(self.critic.state_dict(), critic_checkpoint)
|
||||
def load(self,path):
|
||||
actor_checkpoint = os.path.join(path, 'ppo_actor.pt')
|
||||
critic_checkpoint= os.path.join(path, 'ppo_critic.pt')
|
||||
self.actor.load_state_dict(torch.load(actor_checkpoint))
|
||||
self.critic.load_state_dict(torch.load(critic_checkpoint))
|
||||
|
||||
|
||||
132
projects/codes/PPO/task0.py
Normal file
@@ -0,0 +1,132 @@
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import numpy as np
|
||||
import datetime
|
||||
import argparse
|
||||
from common.utils import plot_rewards,save_args,save_results,make_dir
|
||||
from ppo2 import PPO
|
||||
|
||||
def get_args():
|
||||
""" Hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='PPO',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--continuous',default=False,type=bool,help="if PPO is continous") # PPO既可适用于连续动作空间,也可以适用于离散动作空间
|
||||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--batch_size',default=5,type=int) # mini-batch SGD中的批量大小
|
||||
parser.add_argument('--n_epochs',default=4,type=int)
|
||||
parser.add_argument('--actor_lr',default=0.0003,type=float,help="learning rate of actor net")
|
||||
parser.add_argument('--critic_lr',default=0.0003,type=float,help="learning rate of critic net")
|
||||
parser.add_argument('--gae_lambda',default=0.95,type=float)
|
||||
parser.add_argument('--policy_clip',default=0.2,type=float) # PPO-clip中的clip参数,一般是0.1~0.2左右
|
||||
parser.add_argument('--update_fre',default=20,type=int)
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results/' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models/' ) # path to save models
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
def env_agent_config(cfg,seed = 1):
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
n_states = env.observation_space.shape[0] # 状态维度
|
||||
if cfg.continuous:
|
||||
n_actions = env.action_space.shape[0] # 动作维度
|
||||
else:
|
||||
n_actions = env.action_space.n # 动作维度
|
||||
agent = PPO(n_states, n_actions, cfg) # 创建智能体
|
||||
if seed !=0: # 设置随机种子
|
||||
torch.manual_seed(seed)
|
||||
env.seed(seed)
|
||||
np.random.seed(seed)
|
||||
return env, agent
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
steps = 0
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
while not done:
|
||||
action, prob, val = agent.choose_action(state)
|
||||
state_, reward, done, _ = env.step(action)
|
||||
steps += 1
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, prob, val, reward, done)
|
||||
if steps % cfg.update_fre == 0:
|
||||
agent.update()
|
||||
state = state_
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
if (i_ep+1)%10 == 0:
|
||||
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}")
|
||||
print('完成训练!')
|
||||
env.close()
|
||||
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards}
|
||||
return res_dic
|
||||
|
||||
def test(cfg,env,agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.test_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
while not done:
|
||||
action, prob, val = agent.choose_action(state)
|
||||
state_, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
state = state_
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.test_eps, ep_reward))
|
||||
print('完成训练!')
|
||||
env.close()
|
||||
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards}
|
||||
return res_dic
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
# 训练
|
||||
env, agent = env_agent_config(cfg)
|
||||
res_dic = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
save_args(cfg) # 保存参数
|
||||
agent.save(path=cfg.model_path) # save model
|
||||
save_results(res_dic, tag='train',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train")
|
||||
# 测试
|
||||
env, agent = env_agent_config(cfg)
|
||||
agent.load(path=cfg.model_path) # 导入模型
|
||||
res_dic = test(cfg, env, agent)
|
||||
save_results(res_dic, tag='test',
|
||||
path=cfg.result_path) # 保存结果
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果
|
||||