This commit is contained in:
johnjim0816
2022-07-21 22:12:19 +08:00
parent 6b3121fcff
commit e9b3e92141
21 changed files with 99 additions and 85 deletions

View File

@@ -123,14 +123,15 @@ def train(cfg,envs):
loss.backward()
optimizer.step()
print('Finish training')
return test_rewards, test_ma_rewards
return {'rewards':test_rewards,'ma_rewards':test_ma_rewards}
if __name__ == "__main__":
cfg = get_args()
envs = [make_envs(cfg.env_name) for i in range(cfg.n_envs)]
envs = SubprocVecEnv(envs)
# training
rewards,ma_rewards = train(cfg,envs)
res_dic = train(cfg,envs)
make_dir(cfg.result_path,cfg.model_path)
save_args(cfg)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果
save_results(res_dic, tag='train',
path=cfg.result_path)
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 20:58:21
@LastEditor: John
LastEditTime: 2022-07-21 00:05:41
LastEditTime: 2022-07-21 21:51:34
@Discription:
@Environment: python 3.7.7
'''
@@ -86,7 +86,7 @@ def train(cfg, env, agent):
else:
ma_rewards.append(ep_reward)
print('Finish training!')
return rewards, ma_rewards
return {'rewards':rewards,'ma_rewards':ma_rewards}
def test(cfg, env, agent):
print('Start testing')
@@ -111,21 +111,23 @@ def test(cfg, env, agent):
ma_rewards.append(ep_reward)
print(f"Epside:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.1f}")
print('Finish testing!')
return rewards, ma_rewards
return {'rewards':rewards,'ma_rewards':ma_rewards}
if __name__ == "__main__":
cfg = get_args()
# training
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
res_dic = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
save_args(cfg)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, cfg, tag="train")
save_results(res_dic, tag='train',
path=cfg.result_path)
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train")
# testing
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = test(cfg,env,agent)
save_results(rewards,ma_rewards,tag = 'test',path = cfg.result_path)
plot_rewards(rewards, ma_rewards, cfg, tag="test")
res_dic = test(cfg,env,agent)
save_results(res_dic, tag='test',
path=cfg.result_path)
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="test")

View File

@@ -10,7 +10,7 @@ import torch
import datetime
import numpy as np
import argparse
from common.utils import save_results_1, make_dir
from common.utils import save_results, make_dir
from common.utils import plot_rewards,save_args
from dqn import DQN
@@ -95,8 +95,8 @@ def train(cfg, env, agent):
def test(cfg, env, agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
print('Start testing!')
print(f'Env:{cfg.env_name}, A{cfg.algo_name}, 设备:{cfg.device}')
############# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0 ###############
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
@@ -123,7 +123,7 @@ def test(cfg, env, agent):
else:
ma_rewards.append(ep_reward)
print(f'Episode{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f}')
print('完成测试!')
print('Finish testing')
env.close()
return {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps}
@@ -133,16 +133,16 @@ if __name__ == "__main__":
# 训练
env, agent = env_agent_config(cfg)
res_dic = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
save_args(cfg)
agent.save(path=cfg.model_path) # 保存模型
save_results_1(res_dic, tag='train',
path=cfg.result_path) # 保存结果
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果
make_dir(cfg.result_path, cfg.model_path)
save_args(cfg) # save parameters
agent.save(path=cfg.model_path) # save model
save_results(res_dic, tag='train',
path=cfg.result_path)
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train")
# 测试
env, agent = env_agent_config(cfg)
agent.load(path=cfg.model_path) # 导入模型
res_dic = test(cfg, env, agent)
save_results_1(res_dic, tag='test',
save_results(res_dic, tag='test',
path=cfg.result_path) # 保存结果
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果

View File

@@ -1 +0,0 @@
{"algo_name": "DoubleDQN", "env_name": "CartPole-v0", "train_eps": 200, "test_eps": 20, "gamma": 0.99, "epsilon_start": 0.95, "epsilon_end": 0.01, "epsilon_decay": 500, "lr": 0.0001, "memory_capacity": 100000, "batch_size": 64, "target_update": 2, "hidden_dim": 256, "device": "cuda", "result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DoubleDQN/outputs/CartPole-v0/20220721-000842/results/", "model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DoubleDQN/outputs/CartPole-v0/20220721-000842/models/", "save_fig": true}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

View File

@@ -0,0 +1,19 @@
{
"algo_name": "DoubleDQN",
"env_name": "CartPole-v0",
"train_eps": 200,
"test_eps": 20,
"gamma": 0.99,
"epsilon_start": 0.95,
"epsilon_end": 0.01,
"epsilon_decay": 500,
"lr": 0.0001,
"memory_capacity": 100000,
"batch_size": 64,
"target_update": 2,
"hidden_dim": 256,
"device": "cuda",
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DoubleDQN/outputs/CartPole-v0/20220721-215416/results/",
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DoubleDQN/outputs/CartPole-v0/20220721-215416/models/",
"save_fig": true
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

View File

@@ -5,7 +5,7 @@ Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-11-07 18:10:37
LastEditor: JiangJi
LastEditTime: 2022-07-21 00:08:38
LastEditTime: 2022-07-21 21:52:31
Discription:
'''
import sys,os
@@ -86,7 +86,7 @@ def train(cfg,env,agent):
else:
ma_rewards.append(ep_reward)
print('Finish training!')
return rewards,ma_rewards
return {'rewards':rewards,'ma_rewards':ma_rewards}
def test(cfg,env,agent):
print('Start testing')
@@ -115,22 +115,24 @@ def test(cfg,env,agent):
ma_rewards.append(ep_reward)
print(f"Epside:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.1f}")
print('Finish testing!')
return rewards,ma_rewards
return {'rewards':rewards,'ma_rewards':ma_rewards}
if __name__ == "__main__":
cfg = get_args()
print(cfg.device)
# training
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
res_dic = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
save_args(cfg)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, cfg, tag="train")
save_results(res_dic, tag='train',
path=cfg.result_path)
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train")
# testing
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = test(cfg,env,agent)
save_results(rewards,ma_rewards,tag = 'test',path = cfg.result_path)
plot_rewards(rewards, ma_rewards, cfg, tag="test")
res_dic = test(cfg,env,agent)
save_results(res_dic, tag='test',
path=cfg.result_path)
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="test")

View File

@@ -5,56 +5,47 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:21:53
LastEditor: John
LastEditTime: 2022-02-10 06:13:21
LastEditTime: 2022-07-21 21:44:00
Discription:
Environment:
'''
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add to system path
import gym
import torch
import datetime
import argparse
from itertools import count
from pg import PolicyGradient
from common.utils import save_results, make_dir
from common.utils import plot_rewards
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
class Config:
'''超参数
'''
def __init__(self):
################################## 环境超参数 ###################################
self.algo_name = "PolicyGradient" # 算法名称
self.env_name = 'CartPole-v0' # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十
self.seed = 10 # 随机种子置0则不设置随机种子
self.train_eps = 300 # 训练的回合数
self.test_eps = 30 # 测试的回合数
################################################################################
################################## 算法超参数 ###################################
self.batch_size = 8 # mini-batch SGD中的批量大小
self.lr = 0.01 # 学习率
self.gamma = 0.99 # 强化学习中的折扣因子
self.hidden_dim = 36 # 网络隐藏层
################################################################################
################################# 保存结果相关参数 ################################
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
################################################################################
def get_args():
""" Hyperparameters
"""
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
parser = argparse.ArgumentParser(description="hyperparameters")
parser.add_argument('--algo_name',default='PolicyGradient',type=str,help="name of algorithm")
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
parser.add_argument('--train_eps',default=300,type=int,help="episodes of training")
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
parser.add_argument('--lr',default=0.01,type=float,help="learning rate")
parser.add_argument('--batch_size',default=8,type=int)
parser.add_argument('--hidden_dim',default=36,type=int)
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/results/' )
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
'/' + curr_time + '/models/' ) # path to save models
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
args = parser.parse_args()
return args
def env_agent_config(cfg,seed=1):
@@ -65,9 +56,9 @@ def env_agent_config(cfg,seed=1):
return env,agent
def train(cfg,env,agent):
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
state_pool = [] # 存放每batch_size个episode的state序列
print('Start training!')
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
state_pool = [] # temp states pool per several episodes
action_pool = []
reward_pool = []
rewards = []
@@ -86,11 +77,11 @@ def train(cfg,env,agent):
reward_pool.append(reward)
state = next_state
if done:
print('回合:{}/{}, 奖励:{}'.format(i_ep + 1, cfg.train_eps, ep_reward))
print(f'Episode{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}')
break
if i_ep > 0 and i_ep % cfg.batch_size == 0:
agent.update(reward_pool,state_pool,action_pool)
state_pool = [] # 每个episode的state
state_pool = []
action_pool = []
reward_pool = []
rewards.append(ep_reward)
@@ -99,8 +90,8 @@ def train(cfg,env,agent):
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成训练!')
env.close()
print('Finish training!')
env.close() # close environment
return rewards, ma_rewards

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-12 16:02:24
LastEditor: John
LastEditTime: 2022-07-20 23:53:34
LastEditTime: 2022-07-21 21:45:33
Discription:
Environment:
'''
@@ -69,19 +69,19 @@ def plot_losses(losses, algo="DQN", save=True, path='./'):
plt.savefig(path+"losses_curve")
plt.show()
def save_results_1(dic, tag='train', path='./results'):
def save_results(dic, tag='train', path='./results'):
''' 保存奖励
'''
for key,value in dic.items():
np.save(path+'{}_{}.npy'.format(tag,key),value)
print('Results saved')
def save_results(rewards, ma_rewards, tag='train', path='./results'):
''' 保存奖励
'''
np.save(path+'{}_rewards.npy'.format(tag), rewards)
np.save(path+'{}_ma_rewards.npy'.format(tag), ma_rewards)
print('Result saved!')
# def save_results(rewards, ma_rewards, tag='train', path='./results'):
# ''' 保存奖励
# '''
# np.save(path+'{}_rewards.npy'.format(tag), rewards)
# np.save(path+'{}_ma_rewards.npy'.format(tag), ma_rewards)
# print('Result saved!')
def make_dir(*paths):