154 lines
6.8 KiB
Python
154 lines
6.8 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2021-03-24 22:18:18
|
||
LastEditor: John
|
||
LastEditTime: 2021-05-04 22:39:34
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.optim as optim
|
||
import torch.nn.functional as F
|
||
import numpy as np
|
||
import random,math
|
||
|
||
class ReplayBuffer:
|
||
def __init__(self, capacity):
|
||
self.capacity = capacity # 经验回放的容量
|
||
self.buffer = [] # 缓冲区
|
||
self.position = 0
|
||
|
||
def push(self, state, action, reward, next_state, done):
|
||
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
|
||
'''
|
||
if len(self.buffer) < self.capacity:
|
||
self.buffer.append(None)
|
||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||
self.position = (self.position + 1) % self.capacity
|
||
|
||
def sample(self, batch_size):
|
||
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
|
||
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
|
||
return state, action, reward, next_state, done
|
||
|
||
def __len__(self):
|
||
''' 返回当前存储的量
|
||
'''
|
||
return len(self.buffer)
|
||
class MLP(nn.Module):
|
||
def __init__(self, input_dim,output_dim,hidden_dim=128):
|
||
""" 初始化q网络,为全连接网络
|
||
input_dim: 输入的特征数即环境的状态维度
|
||
output_dim: 输出的动作维度
|
||
"""
|
||
super(MLP, self).__init__()
|
||
self.fc1 = nn.Linear(input_dim, hidden_dim) # 输入层
|
||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||
self.fc3 = nn.Linear(hidden_dim, output_dim) # 输出层
|
||
|
||
def forward(self, x):
|
||
# 各层对应的激活函数
|
||
x = F.relu(self.fc1(x))
|
||
x = F.relu(self.fc2(x))
|
||
return self.fc3(x)
|
||
|
||
class HierarchicalDQN:
|
||
def __init__(self,n_states,n_actions,cfg):
|
||
self.n_states = n_states
|
||
self.n_actions = n_actions
|
||
self.gamma = cfg.gamma
|
||
self.device = cfg.device
|
||
self.batch_size = cfg.batch_size
|
||
self.frame_idx = 0 # 用于epsilon的衰减计数
|
||
self.epsilon = lambda frame_idx: cfg.epsilon_end + (cfg.epsilon_start - cfg.epsilon_end ) * math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||
self.policy_net = MLP(2*n_states, n_actions,cfg.hidden_dim).to(self.device)
|
||
self.meta_policy_net = MLP(n_states, n_states,cfg.hidden_dim).to(self.device)
|
||
self.optimizer = optim.Adam(self.policy_net.parameters(),lr=cfg.lr)
|
||
self.meta_optimizer = optim.Adam(self.meta_policy_net.parameters(),lr=cfg.lr)
|
||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||
self.meta_memory = ReplayBuffer(cfg.memory_capacity)
|
||
self.loss_numpy = 0
|
||
self.meta_loss_numpy = 0
|
||
self.losses = []
|
||
self.meta_losses = []
|
||
def to_onehot(self,x):
|
||
oh = np.zeros(self.n_states)
|
||
oh[x - 1] = 1.
|
||
return oh
|
||
def set_goal(self,state):
|
||
if random.random() > self.epsilon(self.frame_idx):
|
||
with torch.no_grad():
|
||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
|
||
goal = self.meta_policy_net(state).max(1)[1].item()
|
||
else:
|
||
goal = random.randrange(self.n_states)
|
||
return goal
|
||
def choose_action(self,state):
|
||
self.frame_idx += 1
|
||
if random.random() > self.epsilon(self.frame_idx):
|
||
with torch.no_grad():
|
||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
|
||
q_value = self.policy_net(state)
|
||
action = q_value.max(1)[1].item()
|
||
else:
|
||
action = random.randrange(self.n_actions)
|
||
return action
|
||
def update(self):
|
||
self.update_policy()
|
||
self.update_meta()
|
||
def update_policy(self):
|
||
if self.batch_size > len(self.memory):
|
||
return
|
||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size)
|
||
state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float)
|
||
action_batch = torch.tensor(action_batch,device=self.device,dtype=torch.int64).unsqueeze(1)
|
||
reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float)
|
||
next_state_batch = torch.tensor(next_state_batch,device=self.device, dtype=torch.float)
|
||
done_batch = torch.tensor(np.float32(done_batch),device=self.device)
|
||
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1)
|
||
next_state_values = self.policy_net(next_state_batch).max(1)[0].detach()
|
||
expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch)
|
||
loss = nn.MSELoss()(q_values, expected_q_values)
|
||
self.optimizer.zero_grad()
|
||
loss.backward()
|
||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||
param.grad.data.clamp_(-1, 1)
|
||
self.optimizer.step()
|
||
self.loss_numpy = loss.detach().cpu().numpy()
|
||
self.losses.append(self.loss_numpy)
|
||
def update_meta(self):
|
||
if self.batch_size > len(self.meta_memory):
|
||
return
|
||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.meta_memory.sample(self.batch_size)
|
||
state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float)
|
||
action_batch = torch.tensor(action_batch,device=self.device,dtype=torch.int64).unsqueeze(1)
|
||
reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float)
|
||
next_state_batch = torch.tensor(next_state_batch,device=self.device, dtype=torch.float)
|
||
done_batch = torch.tensor(np.float32(done_batch),device=self.device)
|
||
q_values = self.meta_policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1)
|
||
next_state_values = self.meta_policy_net(next_state_batch).max(1)[0].detach()
|
||
expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch)
|
||
meta_loss = nn.MSELoss()(q_values, expected_q_values)
|
||
self.meta_optimizer.zero_grad()
|
||
meta_loss.backward()
|
||
for param in self.meta_policy_net.parameters(): # clip防止梯度爆炸
|
||
param.grad.data.clamp_(-1, 1)
|
||
self.meta_optimizer.step()
|
||
self.meta_loss_numpy = meta_loss.detach().cpu().numpy()
|
||
self.meta_losses.append(self.meta_loss_numpy)
|
||
|
||
def save(self, path):
|
||
torch.save(self.policy_net.state_dict(), path+'policy_checkpoint.pth')
|
||
torch.save(self.meta_policy_net.state_dict(), path+'meta_checkpoint.pth')
|
||
|
||
def load(self, path):
|
||
self.policy_net.load_state_dict(torch.load(path+'policy_checkpoint.pth'))
|
||
self.meta_policy_net.load_state_dict(torch.load(path+'meta_checkpoint.pth'))
|
||
|
||
|
||
|
||
|