77 lines
3.2 KiB
Python
77 lines
3.2 KiB
Python
import sys
|
||
import os
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||
parent_path = os.path.dirname(curr_path) # 父路径
|
||
sys.path.append(parent_path) # 添加路径到系统路径
|
||
|
||
import numpy as np
|
||
|
||
def train(cfg, env, agent):
|
||
print('开始训练!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
for i_ep in range(cfg.train_eps):
|
||
state = env.reset()
|
||
done = False
|
||
ep_reward = 0
|
||
while not done:
|
||
goal = agent.set_goal(state)
|
||
onehot_goal = agent.to_onehot(goal)
|
||
meta_state = state
|
||
extrinsic_reward = 0
|
||
while not done and goal != np.argmax(state):
|
||
goal_state = np.concatenate([state, onehot_goal])
|
||
action = agent.choose_action(goal_state)
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
extrinsic_reward += reward
|
||
intrinsic_reward = 1.0 if goal == np.argmax(
|
||
next_state) else 0.0
|
||
agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate(
|
||
[next_state, onehot_goal]), done)
|
||
state = next_state
|
||
agent.update()
|
||
if (i_ep+1)%10 == 0:
|
||
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward},Loss:{agent.loss_numpy:.2f}, Meta_Loss:{agent.meta_loss_numpy:.2f}')
|
||
agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done)
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(
|
||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print('完成训练!')
|
||
return rewards, ma_rewards
|
||
|
||
def test(cfg, env, agent):
|
||
print('开始测试!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
for i_ep in range(cfg.train_eps):
|
||
state = env.reset()
|
||
done = False
|
||
ep_reward = 0
|
||
while not done:
|
||
goal = agent.set_goal(state)
|
||
onehot_goal = agent.to_onehot(goal)
|
||
extrinsic_reward = 0
|
||
while not done and goal != np.argmax(state):
|
||
goal_state = np.concatenate([state, onehot_goal])
|
||
action = agent.choose_action(goal_state)
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
extrinsic_reward += reward
|
||
state = next_state
|
||
agent.update()
|
||
if (i_ep+1)%10 == 0:
|
||
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward},Loss:{agent.loss_numpy:.2f}, Meta_Loss:{agent.meta_loss_numpy:.2f}')
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(
|
||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print('完成训练!')
|
||
return rewards, ma_rewards |