132 lines
5.7 KiB
Python
132 lines
5.7 KiB
Python
import sys,os
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||
parent_path = os.path.dirname(curr_path) # 父路径
|
||
sys.path.append(parent_path) # 添加路径到系统路径
|
||
|
||
import gym
|
||
import torch
|
||
import numpy as np
|
||
import datetime
|
||
import argparse
|
||
from common.utils import plot_rewards,save_args,save_results,make_dir
|
||
from ppo2 import PPO
|
||
|
||
def get_args():
|
||
""" Hyperparameters
|
||
"""
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||
parser.add_argument('--algo_name',default='PPO',type=str,help="name of algorithm")
|
||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||
parser.add_argument('--continuous',default=False,type=bool,help="if PPO is continous") # PPO既可适用于连续动作空间,也可以适用于离散动作空间
|
||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||
parser.add_argument('--batch_size',default=5,type=int) # mini-batch SGD中的批量大小
|
||
parser.add_argument('--n_epochs',default=4,type=int)
|
||
parser.add_argument('--actor_lr',default=0.0003,type=float,help="learning rate of actor net")
|
||
parser.add_argument('--critic_lr',default=0.0003,type=float,help="learning rate of critic net")
|
||
parser.add_argument('--gae_lambda',default=0.95,type=float)
|
||
parser.add_argument('--policy_clip',default=0.2,type=float) # PPO-clip中的clip参数,一般是0.1~0.2左右
|
||
parser.add_argument('--update_fre',default=20,type=int)
|
||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/results/' )
|
||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/models/' ) # path to save models
|
||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||
args = parser.parse_args()
|
||
return args
|
||
|
||
def env_agent_config(cfg,seed = 1):
|
||
''' 创建环境和智能体
|
||
'''
|
||
env = gym.make(cfg.env_name) # 创建环境
|
||
n_states = env.observation_space.shape[0] # 状态维度
|
||
if cfg.continuous:
|
||
n_actions = env.action_space.shape[0] # 动作维度
|
||
else:
|
||
n_actions = env.action_space.n # 动作维度
|
||
agent = PPO(n_states, n_actions, cfg) # 创建智能体
|
||
if seed !=0: # 设置随机种子
|
||
torch.manual_seed(seed)
|
||
env.seed(seed)
|
||
np.random.seed(seed)
|
||
return env, agent
|
||
|
||
def train(cfg,env,agent):
|
||
print('开始训练!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
steps = 0
|
||
for i_ep in range(cfg.train_eps):
|
||
state = env.reset()
|
||
done = False
|
||
ep_reward = 0
|
||
while not done:
|
||
action, prob, val = agent.choose_action(state)
|
||
state_, reward, done, _ = env.step(action)
|
||
steps += 1
|
||
ep_reward += reward
|
||
agent.memory.push(state, action, prob, val, reward, done)
|
||
if steps % cfg.update_fre == 0:
|
||
agent.update()
|
||
state = state_
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
if (i_ep+1)%10 == 0:
|
||
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}")
|
||
print('完成训练!')
|
||
env.close()
|
||
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards}
|
||
return res_dic
|
||
|
||
def test(cfg,env,agent):
|
||
print('开始测试!')
|
||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||
rewards = [] # 记录所有回合的奖励
|
||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||
for i_ep in range(cfg.test_eps):
|
||
state = env.reset()
|
||
done = False
|
||
ep_reward = 0
|
||
while not done:
|
||
action, prob, val = agent.choose_action(state)
|
||
state_, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
state = state_
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(
|
||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.test_eps, ep_reward))
|
||
print('完成训练!')
|
||
env.close()
|
||
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards}
|
||
return res_dic
|
||
|
||
if __name__ == "__main__":
|
||
cfg = get_args()
|
||
# 训练
|
||
env, agent = env_agent_config(cfg)
|
||
res_dic = train(cfg, env, agent)
|
||
make_dir(cfg.result_path, cfg.model_path)
|
||
save_args(cfg) # 保存参数
|
||
agent.save(path=cfg.model_path) # save model
|
||
save_results(res_dic, tag='train',
|
||
path=cfg.result_path)
|
||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train")
|
||
# 测试
|
||
env, agent = env_agent_config(cfg)
|
||
agent.load(path=cfg.model_path) # 导入模型
|
||
res_dic = test(cfg, env, agent)
|
||
save_results(res_dic, tag='test',
|
||
path=cfg.result_path) # 保存结果
|
||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果 |