134 lines
5.8 KiB
Python
134 lines
5.8 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
import torch.optim as optim
|
||
import torch.autograd as autograd
|
||
import random
|
||
import math
|
||
class CNN(nn.Module):
|
||
def __init__(self, input_dim, output_dim):
|
||
super(CNN, self).__init__()
|
||
|
||
self.input_dim = input_dim
|
||
self.output_dim = output_dim
|
||
|
||
self.features = nn.Sequential(
|
||
nn.Conv2d(input_dim[0], 32, kernel_size=8, stride=4),
|
||
nn.ReLU(),
|
||
nn.Conv2d(32, 64, kernel_size=4, stride=2),
|
||
nn.ReLU(),
|
||
nn.Conv2d(64, 64, kernel_size=3, stride=1),
|
||
nn.ReLU()
|
||
)
|
||
|
||
self.fc = nn.Sequential(
|
||
nn.Linear(self.feature_size(), 512),
|
||
nn.ReLU(),
|
||
nn.Linear(512, self.output_dim)
|
||
)
|
||
|
||
def forward(self, x):
|
||
x = self.features(x)
|
||
x = x.view(x.size(0), -1)
|
||
x = self.fc(x)
|
||
return x
|
||
|
||
def feature_size(self):
|
||
return self.features(autograd.Variable(torch.zeros(1, *self.input_dim))).view(1, -1).size(1)
|
||
|
||
|
||
def act(self, state, epsilon):
|
||
if random.random() > epsilon:
|
||
state = Variable(torch.FloatTensor(np.float32(state)).unsqueeze(0), volatile=True)
|
||
q_value = self.forward(state)
|
||
action = q_value.max(1)[1].data[0]
|
||
else:
|
||
action = random.randrange(env.action_space.n)
|
||
return action
|
||
|
||
class ReplayBuffer:
|
||
def __init__(self, capacity):
|
||
self.capacity = capacity # 经验回放的容量
|
||
self.buffer = [] # 缓冲区
|
||
self.position = 0
|
||
|
||
def push(self, state, action, reward, next_state, done):
|
||
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
|
||
'''
|
||
if len(self.buffer) < self.capacity:
|
||
self.buffer.append(None)
|
||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||
self.position = (self.position + 1) % self.capacity
|
||
|
||
def sample(self, batch_size):
|
||
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
|
||
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
|
||
return state, action, reward, next_state, done
|
||
|
||
def __len__(self):
|
||
''' 返回当前存储的量
|
||
'''
|
||
return len(self.buffer)
|
||
|
||
class DQN:
|
||
def __init__(self, n_states, n_actions, cfg):
|
||
|
||
self.n_actions = n_actions # 总的动作个数
|
||
self.device = cfg.device # 设备,cpu或gpu等
|
||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||
# e-greedy策略相关参数
|
||
self.frame_idx = 0 # 用于epsilon的衰减计数
|
||
self.epsilon = lambda frame_idx: cfg.epsilon_end + \
|
||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||
self.batch_size = cfg.batch_size
|
||
self.policy_net = CNN(n_states, n_actions).to(self.device)
|
||
self.target_net = CNN(n_states, n_actions).to(self.device)
|
||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
|
||
target_param.data.copy_(param.data)
|
||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
|
||
self.memory = ReplayBuffer(cfg.memory_capacity) # 经验回放
|
||
|
||
def choose_action(self, state):
|
||
''' 选择动作
|
||
'''
|
||
self.frame_idx += 1
|
||
if random.random() > self.epsilon(self.frame_idx):
|
||
with torch.no_grad():
|
||
print(type(state))
|
||
state = torch.tensor([state], device=self.device, dtype=torch.float32)
|
||
q_values = self.policy_net(state)
|
||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||
else:
|
||
action = random.randrange(self.n_actions)
|
||
return action
|
||
def update(self):
|
||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||
return
|
||
# 从经验回放中(replay memory)中随机采样一个批量的转移(transition)
|
||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
||
self.batch_size)
|
||
# 转为张量
|
||
state_batch = torch.tensor(state_batch, device=self.device, dtype=torch.float)
|
||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1)
|
||
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float)
|
||
next_state_batch = torch.tensor(next_state_batch, device=self.device, dtype=torch.float)
|
||
done_batch = torch.tensor(np.float32(done_batch), device=self.device)
|
||
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) # 计算当前状态(s_t,a)对应的Q(s_t, a)
|
||
next_q_values = self.target_net(next_state_batch).max(1)[0].detach() # 计算下一时刻的状态(s_t_,a)对应的Q值
|
||
# 计算期望的Q值,对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||
expected_q_values = reward_batch + self.gamma * next_q_values * (1-done_batch)
|
||
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算均方根损失
|
||
# 优化更新模型
|
||
self.optimizer.zero_grad()
|
||
loss.backward()
|
||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||
param.grad.data.clamp_(-1, 1)
|
||
self.optimizer.step()
|
||
|
||
def save(self, path):
|
||
torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth')
|
||
|
||
def load(self, path):
|
||
self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth'))
|
||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||
param.data.copy_(target_param.data) |