删除projects
10
projects/.gitignore
vendored
@@ -1,10 +0,0 @@
|
||||
.DS_Store
|
||||
.ipynb_checkpoints
|
||||
__pycache__
|
||||
.vscode
|
||||
test.py
|
||||
pseudocodes.aux
|
||||
pseudocodes.log
|
||||
pseudocodes.synctex.gz
|
||||
pseudocodes.out
|
||||
pseudocodes.toc
|
||||
@@ -1,21 +0,0 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2020 John Jim
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
@@ -1,115 +0,0 @@
|
||||
## 0. 写在前面
|
||||
|
||||
本项目用于学习RL基础算法,主要面向对象为RL初学者、需要结合RL的非专业学习者,尽量做到: **注释详细**,**结构清晰**。
|
||||
|
||||
注意本项目为实战内容,建议首先掌握相关算法的一些理论基础,再来享用本项目,理论教程参考本人参与编写的[蘑菇书](https://github.com/datawhalechina/easy-rl)。
|
||||
|
||||
未来开发计划包括但不限于:多智能体算法、强化学习Python包以及强化学习图形化编程平台等等。
|
||||
|
||||
## 1. 项目说明
|
||||
|
||||
项目内容主要包含以下几个部分:
|
||||
* [Jupyter Notebook](./notebooks/):使用Notebook写的算法,有比较详细的实战引导,推荐新手食用
|
||||
* [codes](./codes/):这些是基于Python脚本写的算法,风格比较接近实际项目的写法,推荐有一定代码基础的人阅读,下面会说明其具体的一些架构
|
||||
* [附件](./assets/):目前包含强化学习各算法的中文伪代码
|
||||
|
||||
|
||||
[codes](./assets/)结构主要分为以下几个脚本:
|
||||
* ```[algorithm_name].py```:即保存算法的脚本,例如```dqn.py```,每种算法都会有一定的基础模块,例如```Replay Buffer```、```MLP```(多层感知机)等等;
|
||||
* ```task.py```: 即保存任务的脚本,基本包括基于```argparse```模块的参数,训练以及测试函数等等,其中训练函数即```train```遵循伪代码而设计,想读懂代码可从该函数入手;
|
||||
* ```utils.py```:该脚本用于保存诸如存储结果以及画图的软件,在实际项目或研究中,推荐大家使用```Tensorboard```来保存结果,然后使用诸如```matplotlib```以及```seabron```来进一步画图。
|
||||
## 2. 算法列表
|
||||
|
||||
注:点击对应的名称会跳到[codes](./codes/)下对应的算法中,其他版本还请读者自行翻阅
|
||||
|
||||
| 算法名称 | 参考文献 | 作者 | 备注 |
|
||||
| :-------------------------------------: | :----------------------------------------------------------: | :--------------------------------------------------: | :--: |
|
||||
| [Policy Gradient](codes/PolicyGradient) | [Policy Gradient paper](https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf) | [johnjim0816](https://github.com/johnjim0816) | |
|
||||
| [Monte Carlo](codes/MonteCarlo) | | [johnjim0816](https://github.com/johnjim0816) | |
|
||||
| [DQN](codes/DQN) | | [johnjim0816](https://github.com/johnjim0816) | |
|
||||
| DQN-CNN | | | 待更 |
|
||||
| [PER_DQN](codes/PER_DQN) | [PER DQN Paper](https://arxiv.org/abs/1511.05952) | [wangzhongren](https://github.com/wangzhongren-code) | |
|
||||
| [DoubleDQN](codes/DoubleDQN) | [Double DQN Paper](https://arxiv.org/abs/1509.06461) | [johnjim0816](https://github.com/johnjim0816) | |
|
||||
| [SoftQ](codes/SoftQ) | [Soft Q-learning paper](https://arxiv.org/abs/1702.08165) | [johnjim0816](https://github.com/johnjim0816) | |
|
||||
| [SAC](codes/SAC) | [SAC paper](https://arxiv.org/pdf/1812.05905.pdf) | | |
|
||||
| [SAC-Discrete](codes/SAC) | [SAC-Discrete paper](https://arxiv.org/pdf/1910.07207.pdf) | | |
|
||||
| SAC-S | [SAC-S paper](https://arxiv.org/abs/1801.01290) | | |
|
||||
| DSAC | [DSAC paper](https://paperswithcode.com/paper/addressing-value-estimation-errors-in) | | 待更 |
|
||||
|
||||
## 3. 算法环境
|
||||
|
||||
算法环境说明请跳转[env](./codes/envs/README.md)
|
||||
|
||||
## 4. 运行环境
|
||||
|
||||
主要依赖:Python 3.7、PyTorch 1.10.0、Gym 0.25.2。
|
||||
|
||||
### 4.1. 创建Conda环境
|
||||
```bash
|
||||
conda create -n easyrl python=3.7
|
||||
conda activate easyrl # 激活环境
|
||||
```
|
||||
### 4.2. 安装Torch
|
||||
|
||||
安装CPU版本:
|
||||
```bash
|
||||
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cpuonly -c pytorch
|
||||
```
|
||||
安装CUDA版本:
|
||||
```bash
|
||||
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
|
||||
```
|
||||
如果安装Torch需要镜像加速的话,点击[清华镜像链接](https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/),选择对应的操作系统,如```win-64```,然后复制链接,执行:
|
||||
```bash
|
||||
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
|
||||
```
|
||||
也可以使用PiP镜像安装(仅限CUDA版本):
|
||||
```bash
|
||||
pip install torch==1.10.0+cu113 torchvision==0.11.0+cu113 torchaudio==0.10.0 --extra-index-url https://download.pytorch.org/whl/cu113
|
||||
```
|
||||
### 4.3. 检验CUDA版本Torch安装
|
||||
|
||||
CPU版本Torch请忽略此步,执行如下Python脚本,如果返回True说明CUDA版本安装成功:
|
||||
```python
|
||||
import torch
|
||||
print(torch.cuda.is_available())
|
||||
```
|
||||
### 4.4. 安装Gym
|
||||
|
||||
```bash
|
||||
pip install gym==0.25.2
|
||||
```
|
||||
如需安装Atari环境,则需另外安装
|
||||
|
||||
```bash
|
||||
pip install gym[atari,accept-rom-license]==0.25.2
|
||||
```
|
||||
|
||||
### 4.5. 安装其他依赖
|
||||
|
||||
项目根目录下执行:
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## 6.使用说明
|
||||
|
||||
对于[codes](./codes/),`cd`到对应的算法目录下,例如`DQN`:
|
||||
|
||||
```bash
|
||||
python task_0.py
|
||||
```
|
||||
|
||||
或者加载配置文件:
|
||||
|
||||
```bash
|
||||
python task0.py --yaml configs/CartPole-v1_DQN_Train.yaml
|
||||
```
|
||||
|
||||
对于[Jupyter Notebook](./notebooks/):
|
||||
|
||||
* 直接运行对应的ipynb文件就行
|
||||
|
||||
## 6. 友情说明
|
||||
|
||||
推荐使用VS Code做项目,入门可参考[VSCode上手指南](https://blog.csdn.net/JohnJim0/article/details/126366454)
|
||||
@@ -1,359 +0,0 @@
|
||||
\documentclass[11pt]{ctexart}
|
||||
\usepackage{ctex}
|
||||
\usepackage{algorithm}
|
||||
\usepackage{algorithmic}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{hyperref}
|
||||
% \usepackage[hidelinks]{hyperref} 去除超链接的红色框
|
||||
\usepackage{setspace}
|
||||
\usepackage{titlesec}
|
||||
\usepackage{float} % 调用该包能够使用[H]
|
||||
% \pagestyle{plain} % 去除页眉,但是保留页脚编号,都去掉plain换empty
|
||||
|
||||
% 更改脚注为圆圈
|
||||
\usepackage{pifont}
|
||||
\makeatletter
|
||||
\newcommand*{\circnum}[1]{%
|
||||
\expandafter\@circnum\csname c@#1\endcsname
|
||||
}
|
||||
\newcommand*{\@circnum}[1]{%
|
||||
\ifnum#1<1 %
|
||||
\@ctrerr
|
||||
\else
|
||||
\ifnum#1>20 %
|
||||
\@ctrerr
|
||||
\else
|
||||
\ding{\the\numexpr 171+(#1)\relax}%
|
||||
\fi
|
||||
\fi
|
||||
}
|
||||
\makeatother
|
||||
|
||||
\renewcommand*{\thefootnote}{\circnum{footnote}}
|
||||
|
||||
\begin{document}
|
||||
\tableofcontents % 目录,注意要运行两下或者vscode保存两下才能显示
|
||||
% \singlespacing
|
||||
\clearpage
|
||||
\section{模版备用}
|
||||
\begin{algorithm}[H] % [H]固定位置
|
||||
\floatname{algorithm}{{算法}\footnotemark[1]}
|
||||
\renewcommand{\thealgorithm}{} % 去掉算法标号
|
||||
\caption{}
|
||||
\begin{algorithmic}[1] % [1]显示步数
|
||||
\STATE 测试
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
\footnotetext[1]{脚注}
|
||||
\clearpage
|
||||
\section{Q learning算法}
|
||||
\begin{algorithm}[H] % [H]固定位置
|
||||
\floatname{algorithm}{{Q-learning算法}\footnotemark[1]}
|
||||
\renewcommand{\thealgorithm}{} % 去掉算法标号
|
||||
\caption{}
|
||||
\begin{algorithmic}[1] % [1]显示步数
|
||||
\STATE 初始化Q表$Q(s,a)$为任意值,但其中$Q(s_{terminal},)=0$,即终止状态对应的Q值为0
|
||||
\FOR {回合数 = $1,M$}
|
||||
\STATE 重置环境,获得初始状态$s_1$
|
||||
\FOR {时步 = $1,T$}
|
||||
\STATE 根据$\varepsilon-greedy$策略采样动作$a_t$
|
||||
\STATE 环境根据$a_t$反馈奖励$r_t$和下一个状态$s_{t+1}$
|
||||
\STATE {\bfseries 更新策略:}
|
||||
\STATE $Q(s_t,a_t) \leftarrow Q(s_t,a_t)+\alpha[r_t+\gamma\max _{a}Q(s_{t+1},a)-Q(s_t,a_t)]$
|
||||
\STATE 更新状态$s_{t+1} \leftarrow s_t$
|
||||
\ENDFOR
|
||||
\ENDFOR
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
\footnotetext[1]{Reinforcement Learning: An Introduction}
|
||||
\clearpage
|
||||
\section{Sarsa算法}
|
||||
\begin{algorithm}[H] % [H]固定位置
|
||||
\floatname{algorithm}{{Sarsa算法}\footnotemark[1]}
|
||||
\renewcommand{\thealgorithm}{} % 去掉算法标号
|
||||
\caption{}
|
||||
\begin{algorithmic}[1] % [1]显示步数
|
||||
\STATE 初始化Q表$Q(s,a)$为任意值,但其中$Q(s_{terminal},)=0$,即终止状态对应的Q值为0
|
||||
\FOR {回合数 = $1,M$}
|
||||
\STATE 重置环境,获得初始状态$s_1$
|
||||
\STATE 根据$\varepsilon-greedy$策略采样初始动作$a_1$
|
||||
\FOR {时步 = $1,t$}
|
||||
\STATE 环境根据$a_t$反馈奖励$r_t$和下一个状态$s_{t+1}$
|
||||
\STATE 根据$\varepsilon-greedy$策略$s_{t+1}$和采样动作$a_{t+1}$
|
||||
\STATE {\bfseries 更新策略:}
|
||||
\STATE $Q(s_t,a_t) \leftarrow Q(s_t,a_t)+\alpha[r_t+\gamma Q(s_{t+1},a_{t+1})-Q(s_t,a_t)]$
|
||||
\STATE 更新状态$s_{t+1} \leftarrow s_t$
|
||||
\STATE 更新动作$a_{t+1} \leftarrow a_t$
|
||||
\ENDFOR
|
||||
\ENDFOR
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
\footnotetext[1]{Reinforcement Learning: An Introduction}
|
||||
\clearpage
|
||||
|
||||
\section{DQN算法}
|
||||
\begin{algorithm}[H] % [H]固定位置
|
||||
\floatname{algorithm}{{DQN算法}\footnotemark[1]}
|
||||
\renewcommand{\thealgorithm}{} % 去掉算法标号
|
||||
\caption{}
|
||||
\renewcommand{\algorithmicrequire}{\textbf{输入:}}
|
||||
\renewcommand{\algorithmicensure}{\textbf{输出:}}
|
||||
\begin{algorithmic}[1]
|
||||
% \REQUIRE $n \geq 0 \vee x \neq 0$ % 输入
|
||||
% \ENSURE $y = x^n$ % 输出
|
||||
\STATE 初始化策略网络参数$\theta$ % 初始化
|
||||
\STATE 复制参数到目标网络$\hat{Q} \leftarrow Q$
|
||||
\STATE 初始化经验回放$D$
|
||||
\FOR {回合数 = $1,M$}
|
||||
\STATE 重置环境,获得初始状态$s_t$
|
||||
\FOR {时步 = $1,t$}
|
||||
\STATE 根据$\varepsilon-greedy$策略采样动作$a_t$
|
||||
\STATE 环境根据$a_t$反馈奖励$r_t$和下一个状态$s_{t+1}$
|
||||
\STATE 存储transition即$(s_t,a_t,r_t,s_{t+1})$到经验回放$D$中
|
||||
\STATE 更新环境状态$s_{t+1} \leftarrow s_t$
|
||||
\STATE {\bfseries 更新策略:}
|
||||
\STATE 从$D$中采样一个batch的transition
|
||||
\STATE 计算实际的$Q$值,即$y_{j}$\footnotemark[2]
|
||||
\STATE 对损失 $L(\theta)=\left(y_{i}-Q\left(s_{i}, a_{i} ; \theta\right)\right)^{2}$关于参数$\theta$做随机梯度下降\footnotemark[3]
|
||||
\ENDFOR
|
||||
\STATE 每$C$个回合复制参数$\hat{Q}\leftarrow Q$\footnotemark[4]]
|
||||
\ENDFOR
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
\footnotetext[1]{Playing Atari with Deep Reinforcement Learning}
|
||||
\footnotetext[2]{$y_{i}= \begin{cases}r_{i} & \text {对于终止状态} s_{i+1} \\ r_{i}+\gamma \max _{a^{\prime}} Q\left(s_{i+1}, a^{\prime} ; \theta\right) & \text {对于非终止状态} s_{i+1}\end{cases}$}
|
||||
\footnotetext[3]{$\theta_i \leftarrow \theta_i - \lambda \nabla_{\theta_{i}} L_{i}\left(\theta_{i}\right)$}
|
||||
\footnotetext[4]{此处也可像原论文中放到小循环中改成每$C$步,但没有每$C$个回合稳定}
|
||||
\clearpage
|
||||
|
||||
|
||||
\section{PER\_DQN算法}
|
||||
\begin{algorithm}[H] % [H]固定位置
|
||||
\floatname{algorithm}{{PER\_DQN算法}\footnotemark[1]}
|
||||
\renewcommand{\thealgorithm}{} % 去掉算法标号
|
||||
\caption{}
|
||||
\renewcommand{\algorithmicrequire}{\textbf{输入:}}
|
||||
\renewcommand{\algorithmicensure}{\textbf{输出:}}
|
||||
\begin{algorithmic}[1]
|
||||
% \REQUIRE $n \geq 0 \vee x \neq 0$ % 输入
|
||||
% \ENSURE $y = x^n$ % 输出
|
||||
\STATE 初始化策略网络参数$\theta$ % 初始化
|
||||
\STATE 复制参数到目标网络$\hat{Q} \leftarrow Q$
|
||||
\STATE 初始化经验回放$D$
|
||||
\FOR {回合数 = $1,M$}
|
||||
\STATE 重置环境,获得初始状态$s_t$
|
||||
\FOR {时步 = $1,t$}
|
||||
\STATE 根据$\varepsilon-greedy$策略采样动作$a_t$
|
||||
\STATE 环境根据$a_t$反馈奖励$r_t$和下一个状态$s_{t+1}$
|
||||
\STATE 存储transition即$(s_t,a_t,r_t,s_{t+1})$到经验回放$D$,并根据TD-error损失确定其优先级$p_t$
|
||||
\STATE 更新环境状态$s_{t+1} \leftarrow s_t$
|
||||
\STATE {\bfseries 更新策略:}
|
||||
\STATE 按照经验回放中的优先级别,每个样本采样概率为$P(j)=p_j^\alpha / \sum_i p_i^\alpha$,从$D$中采样一个大小为batch的transition
|
||||
\STATE 计算各个样本重要性采样权重 $w_j=(N \cdot P(j))^{-\beta} / \max _i w_i$
|
||||
\STATE 计算TD-error $\delta_j$ ; 并根据TD-error更新优先级$p_j$
|
||||
\STATE 计算实际的$Q$值,即$y_{j}$\footnotemark[2]
|
||||
\STATE 根据重要性采样权重调整损失 $L(\theta)=\left(y_{j}-Q\left(s_{j}, a_{j} ; \theta\right)\cdot w_j \right)^{2}$,并将其关于参数$\theta$做随机梯度下降\footnotemark[3]
|
||||
\ENDFOR
|
||||
\STATE 每$C$个回合复制参数$\hat{Q}\leftarrow Q$\footnotemark[4]]
|
||||
\ENDFOR
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
\footnotetext[1]{Playing Atari with Deep Reinforcement Learning}
|
||||
\footnotetext[2]{$y_{i}= \begin{cases}r_{i} & \text {对于终止状态} s_{i+1} \\ r_{i}+\gamma \max _{a^{\prime}} Q\left(s_{i+1}, a^{\prime} ; \theta\right) & \text {对于非终止状态} s_{i+1}\end{cases}$}
|
||||
\footnotetext[3]{$\theta_i \leftarrow \theta_i - \lambda \nabla_{\theta_{i}} L_{i}\left(\theta_{i}\right)$}
|
||||
\footnotetext[4]{此处也可像原论文中放到小循环中改成每$C$步,但没有每$C$个回合稳定}
|
||||
\clearpage
|
||||
|
||||
|
||||
\section{Policy Gradient算法}
|
||||
\begin{algorithm}[H] % [H]固定位置
|
||||
\floatname{algorithm}{{REINFORCE算法:Monte-Carlo Policy Gradient}\footnotemark[1]}
|
||||
\renewcommand{\thealgorithm}{} % 去掉算法标号
|
||||
\caption{}
|
||||
\begin{algorithmic}[1] % [1]显示步数
|
||||
\STATE 初始化策略参数$\boldsymbol{\theta} \in \mathbb{R}^{d^{\prime}}($ e.g., to $\mathbf{0})$
|
||||
\FOR {回合数 = $1,M$}
|
||||
\STATE 根据策略$\pi(\cdot \mid \cdot, \boldsymbol{\theta})$采样一个(或几个)回合的transition
|
||||
\FOR {时步 = $0,1,2,...,T-1$}
|
||||
\STATE 计算回报$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_{k}$
|
||||
\STATE 更新策略$\boldsymbol{\theta} \leftarrow {\boldsymbol{\theta}+\alpha \gamma^{t}} G \nabla \ln \pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}\right)$
|
||||
\ENDFOR
|
||||
\ENDFOR
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
\footnotetext[1]{Reinforcement Learning: An Introduction}
|
||||
\clearpage
|
||||
\section{Advantage Actor Critic算法}
|
||||
\begin{algorithm}[H] % [H]固定位置
|
||||
\floatname{algorithm}{{Q Actor Critic算法}}
|
||||
\renewcommand{\thealgorithm}{} % 去掉算法标号
|
||||
\caption{}
|
||||
\begin{algorithmic}[1] % [1]显示步数
|
||||
\STATE 初始化Actor参数$\theta$和Critic参数$w$
|
||||
\FOR {回合数 = $1,M$}
|
||||
\STATE 根据策略$\pi_{\theta}(a|s)$采样一个(或几个)回合的transition
|
||||
\STATE {\bfseries 更新Critic参数\footnotemark[1]}
|
||||
\FOR {时步 = $t+1,1$}
|
||||
\STATE 计算Advantage,即$ \delta_t = r_t + \gamma Q_w(s_{t+1},a_{t+1})-Q_w(s_t,a_t)$
|
||||
\STATE $w \leftarrow w+\alpha_{w} \delta_{t} \nabla_{w} Q_w(s_t,a_t)$
|
||||
\STATE $a_t \leftarrow a_{t+1}$,$s_t \leftarrow s_{t+1}$
|
||||
\ENDFOR
|
||||
\STATE 更新Actor参数$\theta \leftarrow \theta+\alpha_{\theta} Q_{w}(s, a) \nabla_{\theta} \log \pi_{\theta}(a \mid s)$
|
||||
\ENDFOR
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
\footnotetext[1]{这里结合TD error的特性按照从$t+1$到$1$计算法Advantage更方便}
|
||||
|
||||
\clearpage
|
||||
|
||||
\section{PPO-Clip算法}
|
||||
\begin{algorithm}[H] % [H]固定位置
|
||||
\floatname{algorithm}{{PPO-Clip算法}\footnotemark[1]\footnotemark[2]}
|
||||
\renewcommand{\thealgorithm}{} % 去掉算法标号
|
||||
\caption{}
|
||||
\begin{algorithmic}[1] % [1]显示步数
|
||||
\STATE 初始化策略网络(Actor)参数$\theta$和价值网络(Critic)参数$\phi$
|
||||
\STATE 初始化Clip参数$\epsilon$
|
||||
\STATE 初始化epoch数量$K$
|
||||
\STATE 初始化经验回放$D$
|
||||
\STATE 初始化总时步数$c=0$
|
||||
\FOR {回合数 = $1,2,\cdots,M$}
|
||||
\STATE 重置环境,获得初始状态$s_0$
|
||||
\FOR {时步 $t = 1,2,\cdots,T$}
|
||||
\STATE 计数总时步$c \leftarrow c+1$
|
||||
\STATE 根据策略$\pi_{\theta}$选择$a_t$
|
||||
\STATE 环境根据$a_t$反馈奖励$r_t$和下一个状态$s_{t+1}$
|
||||
\STATE 存储$(s_t,a_t,r_t,s_{t+1})$到经验回放$D$中
|
||||
\IF{$c$被$C$整除\footnotemark[3]}
|
||||
\FOR {$k= 1,2,\cdots,K$}
|
||||
\STATE 测试
|
||||
\ENDFOR
|
||||
\STATE 清空经验回放$D$
|
||||
\ENDIF
|
||||
\ENDFOR
|
||||
\ENDFOR
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
\footnotetext[1]{Proximal Policy Optimization Algorithms}
|
||||
\footnotetext[2]{https://spinningup.openai.com/en/latest/algorithms/ppo.html}
|
||||
\footnotetext[3]{\bfseries 即每$C$个时步更新策略}
|
||||
\clearpage
|
||||
\section{DDPG算法}
|
||||
\begin{algorithm}[H] % [H]固定位置
|
||||
\floatname{algorithm}{{DDPG算法}\footnotemark[1]}
|
||||
\renewcommand{\thealgorithm}{} % 去掉算法标号
|
||||
\caption{}
|
||||
\begin{algorithmic}[1] % [1]显示步数
|
||||
\STATE 初始化critic网络$Q\left(s, a \mid \theta^Q\right)$和actor网络$\mu(s|\theta^{\mu})$的参数$\theta^Q$和$\theta^{\mu}$
|
||||
\STATE 初始化对应的目标网络参数,即$\theta^{Q^{\prime}} \leftarrow \theta^Q, \theta^{\mu^{\prime}} \leftarrow \theta^\mu$
|
||||
\STATE 初始化经验回放$R$
|
||||
\FOR {回合数 = $1,M$}
|
||||
\STATE 选择动作$a_t=\mu\left(s_t \mid \theta^\mu\right)+\mathcal{N}_t$,$\mathcal{N}_t$为探索噪声
|
||||
\STATE 环境根据$a_t$反馈奖励$s_t$和下一个状态$s_{t+1}$
|
||||
\STATE 存储transition$(s_t,a_t,r_t,s_{t+1})$到经验回放$R$中
|
||||
\STATE 更新环境状态$s_{t+1} \leftarrow s_t$
|
||||
\STATE {\bfseries 更新策略:}
|
||||
\STATE 从$R$中取出一个随机批量的$(s_i,a_i,r_i,s_{i+1})$
|
||||
\STATE 求得$y_i=r_i+\gamma Q^{\prime}\left(s_{i+1}, \mu^{\prime}\left(s_{i+1} \mid \theta^{\mu^{\prime}}\right) \mid \theta^{Q^{\prime}}\right)$
|
||||
\STATE 更新critic参数,其损失为:$L=\frac{1}{N} \sum_i\left(y_i-Q\left(s_i, a_i \mid \theta^Q\right)\right)^2$
|
||||
\STATE 更新actor参数:$\left.\left.\nabla_{\theta^\mu} J \approx \frac{1}{N} \sum_i \nabla_a Q\left(s, a \mid \theta^Q\right)\right|_{s=s_i, a=\mu\left(s_i\right)} \nabla_{\theta^\mu} \mu\left(s \mid \theta^\mu\right)\right|_{s_i}$
|
||||
\STATE 软更新目标网络:$\theta^{Q^{\prime}} \leftarrow \tau \theta^Q+(1-\tau) \theta^{Q^{\prime}}$,
|
||||
$\theta^{\mu^{\prime}} \leftarrow \tau \theta^\mu+(1-\tau) \theta^{\mu^{\prime}}$
|
||||
\ENDFOR
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
\footnotetext[1]{Continuous control with deep reinforcement learning}
|
||||
\clearpage
|
||||
\section{SoftQ算法}
|
||||
\begin{algorithm}[H]
|
||||
\floatname{algorithm}{{SoftQ算法}}
|
||||
\renewcommand{\thealgorithm}{} % 去掉算法标号
|
||||
\caption{}
|
||||
\begin{algorithmic}[1]
|
||||
\STATE 初始化参数$\theta$和$\phi$% 初始化
|
||||
\STATE 复制参数$\bar{\theta} \leftarrow \theta, \bar{\phi} \leftarrow \phi$
|
||||
\STATE 初始化经验回放$D$
|
||||
\FOR {回合数 = $1,M$}
|
||||
\FOR {时步 = $1,t$}
|
||||
\STATE 根据$\mathbf{a}_{t} \leftarrow f^{\phi}\left(\xi ; \mathbf{s}_{t}\right)$采样动作,其中$\xi \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$
|
||||
\STATE 环境根据$a_t$反馈奖励$s_t$和下一个状态$s_{t+1}$
|
||||
\STATE 存储transition即$(s_t,a_t,r_t,s_{t+1})$到经验回放$D$中
|
||||
\STATE 更新环境状态$s_{t+1} \leftarrow s_t$
|
||||
\STATE {\bfseries 更新soft Q函数参数:}
|
||||
\STATE 对于每个$s^{(i)}_{t+1}$采样$\left\{\mathbf{a}^{(i, j)}\right\}_{j=0}^{M} \sim q_{\mathbf{a}^{\prime}}$
|
||||
\STATE 计算empirical soft values $V_{\mathrm{soft}}^{\theta}\left(\mathbf{s}_{t}\right)$\footnotemark[1]
|
||||
\STATE 计算empirical gradient $J_{Q}(\theta)$\footnotemark[2]
|
||||
\STATE 根据$J_{Q}(\theta)$使用ADAM更新参数$\theta$
|
||||
\STATE {\bfseries 更新策略:}
|
||||
\STATE 对于每个$s^{(i)}_{t}$采样$\left\{\xi^{(i, j)}\right\}_{j=0}^{M} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$
|
||||
\STATE 计算$\mathbf{a}_{t}^{(i, j)}=f^{\phi}\left(\xi^{(i, j)}, \mathbf{s}_{t}^{(i)}\right)$
|
||||
\STATE 使用经验估计计算$\Delta f^{\phi}\left(\cdot ; \mathbf{s}_{t}\right)$\footnotemark[3]
|
||||
\STATE 计算经验估计$\frac{\partial J_{\pi}\left(\phi ; \mathbf{s}_{t}\right)}{\partial \phi} \propto \mathbb{E}_{\xi}\left[\Delta f^{\phi}\left(\xi ; \mathbf{s}_{t}\right) \frac{\partial f^{\phi}\left(\xi ; \mathbf{s}_{t}\right)}{\partial \phi}\right]$,即$\hat{\nabla}_{\phi} J_{\pi}$
|
||||
\STATE 根据$\hat{\nabla}_{\phi} J_{\pi}$使用ADAM更新参数$\phi$
|
||||
\STATE
|
||||
\ENDFOR
|
||||
\STATE 每$C$个回合复制参数$\bar{\theta} \leftarrow \theta, \bar{\phi} \leftarrow \phi$
|
||||
\ENDFOR
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
\footnotetext[1]{$V_{\mathrm{soft}}^{\theta}\left(\mathbf{s}_{t}\right)=\alpha \log \mathbb{E}_{q_{\mathbf{a}^{\prime}}}\left[\frac{\exp \left(\frac{1}{\alpha} Q_{\mathrm{soft}}^{\theta}\left(\mathbf{s}_{t}, \mathbf{a}^{\prime}\right)\right)}{q_{\mathbf{a}^{\prime}}\left(\mathbf{a}^{\prime}\right)}\right]$}
|
||||
\footnotetext[2]{$J_{Q}(\theta)=\mathbb{E}_{\mathbf{s}_{t} \sim q_{\mathbf{s}_{t}}, \mathbf{a}_{t} \sim q_{\mathbf{a}_{t}}}\left[\frac{1}{2}\left(\hat{Q}_{\mathrm{soft}}^{\bar{\theta}}\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)-Q_{\mathrm{soft}}^{\theta}\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right)^{2}\right]$}
|
||||
\footnotetext[3]{$\begin{aligned} \Delta f^{\phi}\left(\cdot ; \mathbf{s}_{t}\right)=& \mathbb{E}_{\mathbf{a}_{t} \sim \pi^{\phi}}\left[\left.\kappa\left(\mathbf{a}_{t}, f^{\phi}\left(\cdot ; \mathbf{s}_{t}\right)\right) \nabla_{\mathbf{a}^{\prime}} Q_{\mathrm{soft}}^{\theta}\left(\mathbf{s}_{t}, \mathbf{a}^{\prime}\right)\right|_{\mathbf{a}^{\prime}=\mathbf{a}_{t}}\right.\\ &\left.+\left.\alpha \nabla_{\mathbf{a}^{\prime}} \kappa\left(\mathbf{a}^{\prime}, f^{\phi}\left(\cdot ; \mathbf{s}_{t}\right)\right)\right|_{\mathbf{a}^{\prime}=\mathbf{a}_{t}}\right] \end{aligned}$}
|
||||
\clearpage
|
||||
\section{SAC-S算法}
|
||||
\begin{algorithm}[H] % [H]固定位置
|
||||
\floatname{algorithm}{{SAC-S算法}\footnotemark[1]}
|
||||
\renewcommand{\thealgorithm}{} % 去掉算法标号
|
||||
\caption{}
|
||||
\begin{algorithmic}[1] % [1]显示步数
|
||||
\STATE 初始化参数$\psi, \bar{\psi}, \theta, \phi$
|
||||
\FOR {回合数 = $1,M$}
|
||||
\FOR {时步 = $1,t$}
|
||||
\STATE 根据$\boldsymbol{a}_{t} \sim \pi_{\phi}\left(\boldsymbol{a}_{t} \mid \mathbf{s}_{t}\right)$采样动作$a_t$
|
||||
\STATE 环境反馈奖励和下一个状态,$\mathbf{s}_{t+1} \sim p\left(\mathbf{s}_{t+1} \mid \mathbf{s}_{t}, \mathbf{a}_{t}\right)$
|
||||
\STATE 存储transition到经验回放中,$\mathcal{D} \leftarrow \mathcal{D} \cup\left\{\left(\mathbf{s}_{t}, \mathbf{a}_{t}, r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right), \mathbf{s}_{t+1}\right)\right\}$
|
||||
\STATE 更新环境状态$s_{t+1} \leftarrow s_t$
|
||||
\STATE {\bfseries 更新策略:}
|
||||
\STATE $\psi \leftarrow \psi-\lambda_{V} \hat{\nabla}_{\psi} J_{V}(\psi)$
|
||||
\STATE $\theta_{i} \leftarrow \theta_{i}-\lambda_{Q} \hat{\nabla}_{\theta_{i}} J_{Q}\left(\theta_{i}\right)$ for $i \in\{1,2\}$
|
||||
\STATE $\phi \leftarrow \phi-\lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi)$
|
||||
\STATE $\bar{\psi} \leftarrow \tau \psi+(1-\tau) \bar{\psi}$
|
||||
\ENDFOR
|
||||
\ENDFOR
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
\footnotetext[1]{Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor}
|
||||
\clearpage
|
||||
\section{SAC算法}
|
||||
\begin{algorithm}[H] % [H]固定位置
|
||||
\floatname{algorithm}{{SAC算法}\footnotemark[1]}
|
||||
\renewcommand{\thealgorithm}{} % 去掉算法标号
|
||||
\caption{}
|
||||
\begin{algorithmic}[1]
|
||||
\STATE 初始化网络参数$\theta_1,\theta_2$以及$\phi$ % 初始化
|
||||
\STATE 复制参数到目标网络$\bar{\theta_1} \leftarrow \theta_1,\bar{\theta_2} \leftarrow \theta_2,$
|
||||
\STATE 初始化经验回放$D$
|
||||
\FOR {回合数 = $1,M$}
|
||||
\STATE 重置环境,获得初始状态$s_t$
|
||||
\FOR {时步 = $1,t$}
|
||||
\STATE 根据$\boldsymbol{a}_{t} \sim \pi_{\phi}\left(\boldsymbol{a}_{t} \mid \mathbf{s}_{t}\right)$采样动作$a_t$
|
||||
\STATE 环境反馈奖励和下一个状态,$\mathbf{s}_{t+1} \sim p\left(\mathbf{s}_{t+1} \mid \mathbf{s}_{t}, \mathbf{a}_{t}\right)$
|
||||
\STATE 存储transition到经验回放中,$\mathcal{D} \leftarrow \mathcal{D} \cup\left\{\left(\mathbf{s}_{t}, \mathbf{a}_{t}, r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right), \mathbf{s}_{t+1}\right)\right\}$
|
||||
\STATE 更新环境状态$s_{t+1} \leftarrow s_t$
|
||||
\STATE {\bfseries 更新策略:}
|
||||
\STATE 更新$Q$函数,$\theta_{i} \leftarrow \theta_{i}-\lambda_{Q} \hat{\nabla}_{\theta_{i}} J_{Q}\left(\theta_{i}\right)$ for $i \in\{1,2\}$\footnotemark[2]\footnotemark[3]
|
||||
\STATE 更新策略权重,$\phi \leftarrow \phi-\lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi)$ \footnotemark[4]
|
||||
\STATE 调整temperature,$\alpha \leftarrow \alpha-\lambda \hat{\nabla}_{\alpha} J(\alpha)$ \footnotemark[5]
|
||||
\STATE 更新目标网络权重,$\bar{\theta}_{i} \leftarrow \tau \theta_{i}+(1-\tau) \bar{\theta}_{i}$ for $i \in\{1,2\}$
|
||||
\ENDFOR
|
||||
\ENDFOR
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
\footnotetext[2]{Soft Actor-Critic Algorithms and Applications}
|
||||
\footnotetext[2]{$J_{Q}(\theta)=\mathbb{E}_{\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right) \sim \mathcal{D}}\left[\frac{1}{2}\left(Q_{\theta}\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)-\left(r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)+\gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p}\left[V_{\bar{\theta}}\left(\mathbf{s}_{t+1}\right)\right]\right)\right)^{2}\right]$}
|
||||
\footnotetext[3]{$\hat{\nabla}_{\theta} J_{Q}(\theta)=\nabla_{\theta} Q_{\theta}\left(\mathbf{a}_{t}, \mathbf{s}_{t}\right)\left(Q_{\theta}\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)-\left(r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)+\gamma\left(Q_{\bar{\theta}}\left(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}\right)-\alpha \log \left(\pi_{\phi}\left(\mathbf{a}_{t+1} \mid \mathbf{s}_{t+1}\right)\right)\right)\right)\right.$}
|
||||
\footnotetext[4]{$\hat{\nabla}_{\phi} J_{\pi}(\phi)=\nabla_{\phi} \alpha \log \left(\pi_{\phi}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)\right)+\left(\nabla_{\mathbf{a}_{t}} \alpha \log \left(\pi_{\phi}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)\right)-\nabla_{\mathbf{a}_{t}} Q\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)\right) \nabla_{\phi} f_{\phi}\left(\epsilon_{t} ; \mathbf{s}_{t}\right)$,$\mathbf{a}_{t}=f_{\phi}\left(\epsilon_{t} ; \mathbf{s}_{t}\right)$}
|
||||
\footnotetext[5]{$J(\alpha)=\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{t}}\left[-\alpha \log \pi_{t}\left(\mathbf{a}_{t} \mid \mathbf{s}_{t}\right)-\alpha \overline{\mathcal{H}}\right]$}
|
||||
\clearpage
|
||||
\end{document}
|
||||
@@ -1,7 +0,0 @@
|
||||
## 脚本描述
|
||||
|
||||
* `task0.py`:离散动作任务
|
||||
|
||||
* `task1.py`:离散动作任务,与`task0.py`唯一的区别就是Actor的激活函数是tanh而不是relu,在`CartPole-v1`上效果更好
|
||||
|
||||
* `task2.py`:连续动作任务,#TODO待调试
|
||||
@@ -1,24 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_A2C_20221030-211435
|
||||
max_steps: 200
|
||||
mode: test
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
actor_hidden_dim: 256
|
||||
actor_lr: 0.0003
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
critic_hidden_dim: 256
|
||||
critic_lr: 0.001
|
||||
gamma: 0.99
|
||||
hidden_dim: 256
|
||||
target_update: 4
|
||||
@@ -1,23 +0,0 @@
|
||||
2022-10-30 21:25:53 - r - INFO: - n_states: 4, n_actions: 2
|
||||
2022-10-30 21:25:55 - r - INFO: - Start testing!
|
||||
2022-10-30 21:25:55 - r - INFO: - Env: CartPole-v1, Algorithm: A2C, Device: cuda
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 1/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 2/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 3/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 4/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 5/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 6/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 7/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 8/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 9/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 10/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 11/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 12/20, Reward: 190.0, Step: 190
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 13/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 14/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 15/20, Reward: 96.0, Step: 96
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 16/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 17/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 18/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 19/20, Reward: 112.0, Step: 112
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 20/20, Reward: 200.0, Step: 200
|
||||
|
Before Width: | Height: | Size: 34 KiB |
@@ -1,21 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,200.0,200
|
||||
1,200.0,200
|
||||
2,200.0,200
|
||||
3,200.0,200
|
||||
4,200.0,200
|
||||
5,200.0,200
|
||||
6,200.0,200
|
||||
7,200.0,200
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
10,200.0,200
|
||||
11,190.0,190
|
||||
12,200.0,200
|
||||
13,200.0,200
|
||||
14,96.0,96
|
||||
15,200.0,200
|
||||
16,200.0,200
|
||||
17,200.0,200
|
||||
18,112.0,112
|
||||
19,200.0,200
|
||||
|
@@ -1,25 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
eval_per_episode: 5
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_A2C_20221031-232138
|
||||
max_steps: 200
|
||||
mode: test
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
actor_hidden_dim: 256
|
||||
actor_lr: 0.0003
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
critic_hidden_dim: 256
|
||||
critic_lr: 0.001
|
||||
gamma: 0.99
|
||||
hidden_dim: 256
|
||||
target_update: 4
|
||||
@@ -1,28 +0,0 @@
|
||||
2022-10-31 23:33:16 - r - INFO: - n_states: 4, n_actions: 2
|
||||
2022-10-31 23:33:16 - r - INFO: - Actor model name: ActorSoftmaxTanh
|
||||
2022-10-31 23:33:16 - r - INFO: - Critic model name: Critic
|
||||
2022-10-31 23:33:16 - r - INFO: - ACMemory memory name: PGReplay
|
||||
2022-10-31 23:33:16 - r - INFO: - agent name: A2C
|
||||
2022-10-31 23:33:17 - r - INFO: - Start testing!
|
||||
2022-10-31 23:33:17 - r - INFO: - Env: CartPole-v1, Algorithm: A2C, Device: cuda
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 1/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 2/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 3/20, Reward: 186.0, Step: 186
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 4/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 5/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 6/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 7/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 8/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 9/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 10/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 11/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 12/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 13/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 14/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 15/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 16/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 17/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 18/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 19/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:20 - r - INFO: - Episode: 20/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:20 - r - INFO: - Finish testing!
|
||||
|
Before Width: | Height: | Size: 31 KiB |
@@ -1,21 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,200.0,200
|
||||
1,200.0,200
|
||||
2,186.0,186
|
||||
3,200.0,200
|
||||
4,200.0,200
|
||||
5,200.0,200
|
||||
6,200.0,200
|
||||
7,200.0,200
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
10,200.0,200
|
||||
11,200.0,200
|
||||
12,200.0,200
|
||||
13,200.0,200
|
||||
14,200.0,200
|
||||
15,200.0,200
|
||||
16,200.0,200
|
||||
17,200.0,200
|
||||
18,200.0,200
|
||||
19,200.0,200
|
||||
|
@@ -1,23 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
load_checkpoint: false
|
||||
load_path: tasks
|
||||
max_steps: 200
|
||||
mode: train
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
actor_hidden_dim: 256
|
||||
actor_lr: 0.0003
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
critic_hidden_dim: 256
|
||||
critic_lr: 0.001
|
||||
gamma: 0.99
|
||||
hidden_dim: 256
|
||||
|
Before Width: | Height: | Size: 68 KiB |
@@ -1,24 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
eval_per_episode: 5
|
||||
load_checkpoint: false
|
||||
load_path: tasks
|
||||
max_steps: 200
|
||||
mode: train
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
actor_hidden_dim: 256
|
||||
actor_lr: 0.0003
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
critic_hidden_dim: 256
|
||||
critic_lr: 0.001
|
||||
gamma: 0.99
|
||||
hidden_dim: 256
|
||||
|
Before Width: | Height: | Size: 58 KiB |
@@ -1,103 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-08-16 23:05:25
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 00:33:49
|
||||
Discription:
|
||||
'''
|
||||
import torch
|
||||
import numpy as np
|
||||
from torch.distributions import Categorical,Normal
|
||||
|
||||
|
||||
class A2C:
|
||||
def __init__(self,models,memories,cfg):
|
||||
self.n_actions = cfg.n_actions
|
||||
self.gamma = cfg.gamma
|
||||
self.device = torch.device(cfg.device)
|
||||
self.continuous = cfg.continuous
|
||||
if hasattr(cfg,'action_bound'):
|
||||
self.action_bound = cfg.action_bound
|
||||
self.memory = memories['ACMemory']
|
||||
self.actor = models['Actor'].to(self.device)
|
||||
self.critic = models['Critic'].to(self.device)
|
||||
self.actor_optim = torch.optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
|
||||
self.critic_optim = torch.optim.Adam(self.critic.parameters(), lr=cfg.critic_lr)
|
||||
def sample_action(self,state):
|
||||
# state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
# dist = self.actor(state)
|
||||
# self.entropy = - np.sum(np.mean(dist.detach().cpu().numpy()) * np.log(dist.detach().cpu().numpy()))
|
||||
# value = self.critic(state) # note that 'dist' need require_grad=True
|
||||
# self.value = value.detach().cpu().numpy().squeeze(0)[0]
|
||||
# action = np.random.choice(self.n_actions, p=dist.detach().cpu().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
# self.log_prob = torch.log(dist.squeeze(0)[action])
|
||||
if self.continuous:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
mu, sigma = self.actor(state)
|
||||
dist = Normal(self.action_bound * mu.view(1,), sigma.view(1,))
|
||||
action = dist.sample()
|
||||
value = self.critic(state)
|
||||
# self.entropy = - np.sum(np.mean(dist.detach().cpu().numpy()) * np.log(dist.detach().cpu().numpy()))
|
||||
self.value = value.detach().cpu().numpy().squeeze(0)[0] # detach() to avoid gradient
|
||||
self.log_prob = dist.log_prob(action).squeeze(dim=0) # Tensor([0.])
|
||||
self.entropy = dist.entropy().cpu().detach().numpy().squeeze(0) # detach() to avoid gradient
|
||||
return action.cpu().detach().numpy()
|
||||
else:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
probs = self.actor(state)
|
||||
dist = Categorical(probs)
|
||||
action = dist.sample() # Tensor([0])
|
||||
value = self.critic(state)
|
||||
self.value = value.detach().cpu().numpy().squeeze(0)[0] # detach() to avoid gradient
|
||||
self.log_prob = dist.log_prob(action).squeeze(dim=0) # Tensor([0.])
|
||||
self.entropy = dist.entropy().cpu().detach().numpy().squeeze(0) # detach() to avoid gradient
|
||||
return action.cpu().numpy().item()
|
||||
@torch.no_grad()
|
||||
def predict_action(self,state):
|
||||
if self.continuous:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
mu, sigma = self.actor(state)
|
||||
dist = Normal(self.action_bound * mu.view(1,), sigma.view(1,))
|
||||
action = dist.sample()
|
||||
return action.cpu().detach().numpy()
|
||||
else:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
dist = self.actor(state)
|
||||
# value = self.critic(state) # note that 'dist' need require_grad=True
|
||||
# value = value.detach().cpu().numpy().squeeze(0)[0]
|
||||
action = np.random.choice(self.n_actions, p=dist.detach().cpu().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action
|
||||
def update(self,next_state,entropy):
|
||||
value_pool,log_prob_pool,reward_pool = self.memory.sample()
|
||||
value_pool = torch.tensor(value_pool, device=self.device)
|
||||
log_prob_pool = torch.stack(log_prob_pool)
|
||||
next_state = torch.tensor(next_state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
next_value = self.critic(next_state)
|
||||
returns = np.zeros_like(reward_pool)
|
||||
for t in reversed(range(len(reward_pool))):
|
||||
next_value = reward_pool[t] + self.gamma * next_value # G(s_{t},a{t}) = r_{t+1} + gamma * V(s_{t+1})
|
||||
returns[t] = next_value
|
||||
returns = torch.tensor(returns, device=self.device)
|
||||
advantages = returns - value_pool
|
||||
actor_loss = (-log_prob_pool * advantages).mean()
|
||||
critic_loss = 0.5 * advantages.pow(2).mean()
|
||||
tot_loss = actor_loss + critic_loss + 0.001 * entropy
|
||||
self.actor_optim.zero_grad()
|
||||
self.critic_optim.zero_grad()
|
||||
tot_loss.backward()
|
||||
self.actor_optim.step()
|
||||
self.critic_optim.step()
|
||||
self.memory.clear()
|
||||
def save_model(self, path):
|
||||
from pathlib import Path
|
||||
# create path
|
||||
Path(path).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.actor.state_dict(), f"{path}/actor_checkpoint.pt")
|
||||
torch.save(self.critic.state_dict(), f"{path}/critic_checkpoint.pt")
|
||||
|
||||
def load_model(self, path):
|
||||
self.actor.load_state_dict(torch.load(f"{path}/actor_checkpoint.pt"))
|
||||
self.critic.load_state_dict(torch.load(f"{path}/critic_checkpoint.pt"))
|
||||
@@ -1,65 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-09-19 14:48:16
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-30 01:21:50
|
||||
Discription: #TODO,待更新模版
|
||||
'''
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
class A2C_2:
|
||||
def __init__(self,models,memories,cfg):
|
||||
self.n_actions = cfg.n_actions
|
||||
self.gamma = cfg.gamma
|
||||
self.device = torch.device(cfg.device)
|
||||
self.memory = memories['ACMemory']
|
||||
self.ac_net = models['ActorCritic'].to(self.device)
|
||||
self.ac_optimizer = torch.optim.Adam(self.ac_net.parameters(), lr = cfg.lr)
|
||||
def sample_action(self,state):
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
value, dist = self.ac_net(state) # note that 'dist' need require_grad=True
|
||||
value = value.detach().numpy().squeeze(0)[0]
|
||||
action = np.random.choice(self.n_actions, p=dist.detach().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action,value,dist
|
||||
def predict_action(self,state):
|
||||
''' predict can be all wrapped with no_grad(), then donot need detach(), or you can just copy contents of 'sample_action'
|
||||
'''
|
||||
with torch.no_grad():
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
value, dist = self.ac_net(state)
|
||||
value = value.numpy().squeeze(0)[0] # shape(value) = (1,)
|
||||
action = np.random.choice(self.n_actions, p=dist.numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action,value,dist
|
||||
def update(self,next_state,entropy):
|
||||
value_pool,log_prob_pool,reward_pool = self.memory.sample()
|
||||
next_state = torch.tensor(next_state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
next_value,_ = self.ac_net(next_state)
|
||||
returns = np.zeros_like(reward_pool)
|
||||
for t in reversed(range(len(reward_pool))):
|
||||
next_value = reward_pool[t] + self.gamma * next_value # G(s_{t},a{t}) = r_{t+1} + gamma * V(s_{t+1})
|
||||
returns[t] = next_value
|
||||
returns = torch.tensor(returns, device=self.device)
|
||||
value_pool = torch.tensor(value_pool, device=self.device)
|
||||
advantages = returns - value_pool
|
||||
log_prob_pool = torch.stack(log_prob_pool)
|
||||
actor_loss = (-log_prob_pool * advantages).mean()
|
||||
critic_loss = 0.5 * advantages.pow(2).mean()
|
||||
ac_loss = actor_loss + critic_loss + 0.001 * entropy
|
||||
self.ac_optimizer.zero_grad()
|
||||
ac_loss.backward()
|
||||
self.ac_optimizer.step()
|
||||
self.memory.clear()
|
||||
def save_model(self, path):
|
||||
from pathlib import Path
|
||||
# create path
|
||||
Path(path).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.ac_net.state_dict(), f"{path}/a2c_checkpoint.pt")
|
||||
|
||||
def load_model(self, path):
|
||||
self.ac_net.load_state_dict(torch.load(f"{path}/a2c_checkpoint.pt"))
|
||||
|
||||
|
||||
@@ -1,21 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
mode: test
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_A2C_20221031-232138
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
continuous: false
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
gamma: 0.99
|
||||
actor_lr: 0.0003
|
||||
critic_lr: 0.001
|
||||
target_update: 4
|
||||
@@ -1,19 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
mode: train
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 600
|
||||
algo_cfg:
|
||||
continuous: false
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
gamma: 0.0003
|
||||
lr: 0.001
|
||||
@@ -1,21 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: Pendulum-v1
|
||||
mode: train
|
||||
eval_per_episode: 200
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
continuous: true
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
gamma: 0.0003
|
||||
actor_lr: 0.0003
|
||||
critic_lr: 0.001
|
||||
@@ -1,38 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 00:53:03
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 00:17:55
|
||||
Discription: default parameters of A2C
|
||||
'''
|
||||
from common.config import GeneralConfig,AlgoConfig
|
||||
|
||||
class GeneralConfigA2C(GeneralConfig):
|
||||
def __init__(self) -> None:
|
||||
self.env_name = "CartPole-v1" # name of environment
|
||||
self.algo_name = "A2C" # name of algorithm
|
||||
self.mode = "train" # train or test
|
||||
self.seed = 1 # random seed
|
||||
self.device = "cuda" # device to use
|
||||
self.train_eps = 1000 # number of episodes for training
|
||||
self.test_eps = 20 # number of episodes for testing
|
||||
self.max_steps = 200 # max steps for each episode
|
||||
self.load_checkpoint = False
|
||||
self.load_path = "tasks" # path to load model
|
||||
self.show_fig = False # show figure or not
|
||||
self.save_fig = True # save figure or not
|
||||
|
||||
class AlgoConfigA2C(AlgoConfig):
|
||||
def __init__(self) -> None:
|
||||
self.continuous = False # continuous or discrete action space
|
||||
self.hidden_dim = 256 # hidden_dim for MLP
|
||||
self.gamma = 0.99 # discount factor
|
||||
self.actor_lr = 3e-4 # learning rate of actor
|
||||
self.critic_lr = 1e-3 # learning rate of critic
|
||||
self.actor_hidden_dim = 256 # hidden_dim for actor MLP
|
||||
self.critic_hidden_dim = 256 # hidden_dim for critic MLP
|
||||
self.buffer_size = 100000 # size of replay buffer
|
||||
self.batch_size = 64 # batch size
|
||||
@@ -1,130 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-09-19 14:48:16
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-30 01:21:15
|
||||
Discription: #TODO,待更新模版
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import datetime
|
||||
import argparse
|
||||
import gym
|
||||
import torch
|
||||
import numpy as np
|
||||
from common.utils import all_seed
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorCriticSoftmax
|
||||
from envs.register import register_env
|
||||
from a2c_2 import A2C_2
|
||||
|
||||
class Main(Launcher):
|
||||
def get_args(self):
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='A2C',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=2000,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--lr',default=3e-4,type=float,help="learning rate")
|
||||
parser.add_argument('--actor_hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--critic_hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
|
||||
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
|
||||
}
|
||||
args = {**vars(args),**default_args} # type(dict)
|
||||
return args
|
||||
def env_agent_config(self,cfg):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg['env_name'])
|
||||
env = gym.make(cfg['env_name'])
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
models = {'ActorCritic':ActorCriticSoftmax(cfg['n_states'],cfg['n_actions'], actor_hidden_dim = cfg['actor_hidden_dim'],critic_hidden_dim=cfg['critic_hidden_dim'])}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C_2(models,memories,cfg)
|
||||
return env,agent
|
||||
def train(self,cfg,env,agent):
|
||||
print("Start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
|
||||
for i_ep in range(cfg['train_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
action, value, dist = agent.sample_action(state) # sample action
|
||||
next_state, reward, done, _ = env.step(action) # update env and return transitions
|
||||
log_prob = torch.log(dist.squeeze(0)[action])
|
||||
entropy = -np.sum(np.mean(dist.detach().numpy()) * np.log(dist.detach().numpy()))
|
||||
agent.memory.push((value,log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += entropy
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
if (i_ep+1)%10==0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, Steps:{ep_step}')
|
||||
print("Finish training!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
def test(self,cfg,env,agent):
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
action,_,_ = agent.predict_action(state) # predict action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Steps:{ep_step}, Reward: {ep_reward:.2f}")
|
||||
print("Finish testing!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,142 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 01:19:43
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 01:21:06
|
||||
Discription:
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorSoftmax,Critic
|
||||
from envs.register import register_env
|
||||
from a2c import A2C
|
||||
from config.config import GeneralConfigA2C,AlgoConfigA2C
|
||||
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigA2C())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigA2C())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=True) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed = cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
models = {'Actor':ActorSoftmax(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C(models,memories,cfg)
|
||||
for k,v in models.items():
|
||||
logger.info(f"{k} model name: {type(v).__name__}")
|
||||
for k,v in memories.items():
|
||||
logger.info(f"{k} memory name: {type(v).__name__}")
|
||||
logger.info(f"agent name: {type(agent).__name__}")
|
||||
return env,agent
|
||||
def train_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0 # entropy per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += agent.entropy
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
return agent,ep_reward,ep_step
|
||||
def test_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, terminated, truncated , info = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
# def train(self,cfg,env,agent,logger):
|
||||
# logger.info("Start training!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.train_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0 # step per episode
|
||||
# ep_entropy = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.sample_action(state) # sample action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
# agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
# state = next_state # update state
|
||||
# ep_reward += reward
|
||||
# ep_entropy += agent.entropy
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# agent.update(next_state,ep_entropy) # update agent
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish training!")
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
# def test(self,cfg,env,agent,logger):
|
||||
# logger.info("Start testing!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.test_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.predict_action(state) # predict action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action)
|
||||
# state = next_state
|
||||
# ep_reward += reward
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish testing!")
|
||||
# env.close()
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,142 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 01:19:43
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 01:21:12
|
||||
Discription: continuous action space
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorSoftmaxTanh,Critic
|
||||
from envs.register import register_env
|
||||
from a2c import A2C
|
||||
from config.config import GeneralConfigA2C,AlgoConfigA2C
|
||||
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigA2C())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigA2C())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=True) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed = cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
models = {'Actor':ActorSoftmaxTanh(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C(models,memories,cfg)
|
||||
for k,v in models.items():
|
||||
logger.info(f"{k} model name: {type(v).__name__}")
|
||||
for k,v in memories.items():
|
||||
logger.info(f"{k} memory name: {type(v).__name__}")
|
||||
logger.info(f"agent name: {type(agent).__name__}")
|
||||
return env,agent
|
||||
def train_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0 # entropy per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += agent.entropy
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
return agent,ep_reward,ep_step
|
||||
def test_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, terminated, truncated , info = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
# def train(self,cfg,env,agent,logger):
|
||||
# logger.info("Start training!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.train_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0 # step per episode
|
||||
# ep_entropy = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.sample_action(state) # sample action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
# agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
# state = next_state # update state
|
||||
# ep_reward += reward
|
||||
# ep_entropy += agent.entropy
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# agent.update(next_state,ep_entropy) # update agent
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish training!")
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
# def test(self,cfg,env,agent,logger):
|
||||
# logger.info("Start testing!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.test_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.predict_action(state) # predict action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action)
|
||||
# state = next_state
|
||||
# ep_reward += reward
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish testing!")
|
||||
# env.close()
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,149 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 01:19:43
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 00:08:22
|
||||
Discription: the only difference from task0.py is that the actor here we use ActorSoftmaxTanh instead of ActorSoftmax with ReLU
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import numpy as np
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorNormal,Critic
|
||||
from envs.register import register_env
|
||||
from a2c import A2C
|
||||
from config.config import GeneralConfigA2C,AlgoConfigA2C
|
||||
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigA2C())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigA2C())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=True) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed = cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
try:
|
||||
n_actions = env.action_space.n # action dimension
|
||||
except AttributeError:
|
||||
n_actions = env.action_space.shape[0]
|
||||
logger.info(f"action bound: {abs(env.action_space.low.item())}")
|
||||
setattr(cfg, 'action_bound', abs(env.action_space.low.item()))
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
models = {'Actor':ActorNormal(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C(models,memories,cfg)
|
||||
for k,v in models.items():
|
||||
logger.info(f"{k} model name: {type(v).__name__}")
|
||||
for k,v in memories.items():
|
||||
logger.info(f"{k} memory name: {type(v).__name__}")
|
||||
logger.info(f"agent name: {type(agent).__name__}")
|
||||
return env,agent
|
||||
def train_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0 # entropy per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += agent.entropy
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
return agent,ep_reward,ep_step
|
||||
def test_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, terminated, truncated , info = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
# def train(self,cfg,env,agent,logger):
|
||||
# logger.info("Start training!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.train_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0 # step per episode
|
||||
# ep_entropy = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.sample_action(state) # sample action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
# agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
# state = next_state # update state
|
||||
# ep_reward += reward
|
||||
# ep_entropy += agent.entropy
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# agent.update(next_state,ep_entropy) # update agent
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish training!")
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
# def test(self,cfg,env,agent,logger):
|
||||
# logger.info("Start testing!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.test_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.predict_action(state) # predict action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action)
|
||||
# state = next_state
|
||||
# ep_reward += reward
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish testing!")
|
||||
# env.close()
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
## A2C
|
||||
|
||||
|
||||
|
||||
https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f
|
||||
@@ -1,56 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-05-03 22:16:08
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-07-20 23:54:40
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.distributions import Categorical
|
||||
|
||||
class ActorCritic(nn.Module):
|
||||
''' A2C网络模型,包含一个Actor和Critic
|
||||
'''
|
||||
def __init__(self, input_dim, output_dim, hidden_dim):
|
||||
super(ActorCritic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, output_dim),
|
||||
nn.Softmax(dim=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
value = self.critic(x)
|
||||
probs = self.actor(x)
|
||||
dist = Categorical(probs)
|
||||
return dist, value
|
||||
class A2C:
|
||||
''' A2C算法
|
||||
'''
|
||||
def __init__(self,n_states,n_actions,cfg) -> None:
|
||||
self.gamma = cfg.gamma
|
||||
self.device = torch.device(cfg.device)
|
||||
self.model = ActorCritic(n_states, n_actions, cfg.hidden_size).to(self.device)
|
||||
self.optimizer = optim.Adam(self.model.parameters())
|
||||
|
||||
def compute_returns(self,next_value, rewards, masks):
|
||||
R = next_value
|
||||
returns = []
|
||||
for step in reversed(range(len(rewards))):
|
||||
R = rewards[step] + self.gamma * R * masks[step]
|
||||
returns.insert(0, R)
|
||||
return returns
|
||||
@@ -1,14 +0,0 @@
|
||||
{
|
||||
"algo_name": "A2C",
|
||||
"env_name": "CartPole-v0",
|
||||
"n_envs": 8,
|
||||
"max_steps": 20000,
|
||||
"n_steps": 5,
|
||||
"gamma": 0.99,
|
||||
"lr": 0.001,
|
||||
"hidden_dim": 256,
|
||||
"deivce": "cpu",
|
||||
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials/outputs/CartPole-v0/20220713-221850/results/",
|
||||
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials/outputs/CartPole-v0/20220713-221850/models/",
|
||||
"save_fig": true
|
||||
}
|
||||
|
Before Width: | Height: | Size: 64 KiB |
@@ -1,137 +0,0 @@
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import datetime
|
||||
import argparse
|
||||
from common.multiprocessing_env import SubprocVecEnv
|
||||
from a3c import ActorCritic
|
||||
from common.utils import save_results, make_dir
|
||||
from common.utils import plot_rewards, save_args
|
||||
|
||||
|
||||
def get_args():
|
||||
""" Hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='A2C',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--n_envs',default=8,type=int,help="numbers of environments")
|
||||
|
||||
parser.add_argument('--max_steps',default=20000,type=int,help="episodes of training")
|
||||
parser.add_argument('--n_steps',default=5,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--lr',default=1e-3,type=float,help="learning rate")
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results/' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models/' ) # path to save models
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
def make_envs(env_name):
|
||||
def _thunk():
|
||||
env = gym.make(env_name)
|
||||
env.seed(2)
|
||||
return env
|
||||
return _thunk
|
||||
def test_env(env,model,vis=False):
|
||||
state = env.reset()
|
||||
if vis: env.render()
|
||||
done = False
|
||||
total_reward = 0
|
||||
while not done:
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(cfg.device)
|
||||
dist, _ = model(state)
|
||||
next_state, reward, done, _ = env.step(dist.sample().cpu().numpy()[0])
|
||||
state = next_state
|
||||
if vis: env.render()
|
||||
total_reward += reward
|
||||
return total_reward
|
||||
|
||||
def compute_returns(next_value, rewards, masks, gamma=0.99):
|
||||
R = next_value
|
||||
returns = []
|
||||
for step in reversed(range(len(rewards))):
|
||||
R = rewards[step] + gamma * R * masks[step]
|
||||
returns.insert(0, R)
|
||||
return returns
|
||||
|
||||
|
||||
def train(cfg,envs):
|
||||
print('Start training!')
|
||||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||||
env = gym.make(cfg.env_name) # a single env
|
||||
env.seed(10)
|
||||
n_states = envs.observation_space.shape[0]
|
||||
n_actions = envs.action_space.n
|
||||
model = ActorCritic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||||
optimizer = optim.Adam(model.parameters())
|
||||
step_idx = 0
|
||||
test_rewards = []
|
||||
test_ma_rewards = []
|
||||
state = envs.reset()
|
||||
while step_idx < cfg.max_steps:
|
||||
log_probs = []
|
||||
values = []
|
||||
rewards = []
|
||||
masks = []
|
||||
entropy = 0
|
||||
# rollout trajectory
|
||||
for _ in range(cfg.n_steps):
|
||||
state = torch.FloatTensor(state).to(cfg.device)
|
||||
dist, value = model(state)
|
||||
action = dist.sample()
|
||||
next_state, reward, done, _ = envs.step(action.cpu().numpy())
|
||||
log_prob = dist.log_prob(action)
|
||||
entropy += dist.entropy().mean()
|
||||
log_probs.append(log_prob)
|
||||
values.append(value)
|
||||
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(cfg.device))
|
||||
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(cfg.device))
|
||||
state = next_state
|
||||
step_idx += 1
|
||||
if step_idx % 100 == 0:
|
||||
test_reward = np.mean([test_env(env,model) for _ in range(10)])
|
||||
print(f"step_idx:{step_idx}, test_reward:{test_reward}")
|
||||
test_rewards.append(test_reward)
|
||||
if test_ma_rewards:
|
||||
test_ma_rewards.append(0.9*test_ma_rewards[-1]+0.1*test_reward)
|
||||
else:
|
||||
test_ma_rewards.append(test_reward)
|
||||
# plot(step_idx, test_rewards)
|
||||
next_state = torch.FloatTensor(next_state).to(cfg.device)
|
||||
_, next_value = model(next_state)
|
||||
returns = compute_returns(next_value, rewards, masks)
|
||||
log_probs = torch.cat(log_probs)
|
||||
returns = torch.cat(returns).detach()
|
||||
values = torch.cat(values)
|
||||
advantage = returns - values
|
||||
actor_loss = -(log_probs * advantage.detach()).mean()
|
||||
critic_loss = advantage.pow(2).mean()
|
||||
loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
print('Finish training!')
|
||||
return {'rewards':test_rewards,'ma_rewards':test_ma_rewards}
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
envs = [make_envs(cfg.env_name) for i in range(cfg.n_envs)]
|
||||
envs = SubprocVecEnv(envs)
|
||||
# training
|
||||
res_dic = train(cfg,envs)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
save_args(cfg)
|
||||
save_results(res_dic, tag='train',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果
|
||||
@@ -1,96 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-09 20:25:52
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-09-27 15:43:21
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import random
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
|
||||
class DDPG:
|
||||
def __init__(self, models,memories,cfg):
|
||||
self.device = torch.device(cfg['device'])
|
||||
self.critic = models['critic'].to(self.device)
|
||||
self.target_critic = models['critic'].to(self.device)
|
||||
self.actor = models['actor'].to(self.device)
|
||||
self.target_actor = models['actor'].to(self.device)
|
||||
# copy weights from critic to target_critic
|
||||
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
# copy weights from actor to target_actor
|
||||
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg['critic_lr'])
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg['actor_lr'])
|
||||
self.memory = memories['memory']
|
||||
self.batch_size = cfg['batch_size']
|
||||
self.gamma = cfg['gamma']
|
||||
self.tau = cfg['tau']
|
||||
|
||||
def sample_action(self, state):
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
|
||||
action = self.actor(state)
|
||||
return action.detach().cpu().numpy()[0, 0]
|
||||
@torch.no_grad()
|
||||
def predict_action(self, state):
|
||||
''' predict action
|
||||
'''
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
|
||||
action = self.actor(state)
|
||||
return action.cpu().numpy()[0, 0]
|
||||
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # when memory size is less than batch size, return
|
||||
return
|
||||
# sample a random minibatch of N transitions from R
|
||||
state, action, reward, next_state, done = self.memory.sample(self.batch_size)
|
||||
# convert to tensor
|
||||
state = torch.FloatTensor(np.array(state)).to(self.device)
|
||||
next_state = torch.FloatTensor(np.array(next_state)).to(self.device)
|
||||
action = torch.FloatTensor(np.array(action)).to(self.device)
|
||||
reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device)
|
||||
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device)
|
||||
|
||||
policy_loss = self.critic(state, self.actor(state))
|
||||
policy_loss = -policy_loss.mean()
|
||||
next_action = self.target_actor(next_state)
|
||||
target_value = self.target_critic(next_state, next_action.detach())
|
||||
expected_value = reward + (1.0 - done) * self.gamma * target_value
|
||||
expected_value = torch.clamp(expected_value, -np.inf, np.inf)
|
||||
|
||||
value = self.critic(state, action)
|
||||
value_loss = nn.MSELoss()(value, expected_value.detach())
|
||||
|
||||
self.actor_optimizer.zero_grad()
|
||||
policy_loss.backward()
|
||||
self.actor_optimizer.step()
|
||||
self.critic_optimizer.zero_grad()
|
||||
value_loss.backward()
|
||||
self.critic_optimizer.step()
|
||||
# soft update
|
||||
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
|
||||
target_param.data.copy_(
|
||||
target_param.data * (1.0 - self.tau) +
|
||||
param.data * self.tau
|
||||
)
|
||||
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
|
||||
target_param.data.copy_(
|
||||
target_param.data * (1.0 - self.tau) +
|
||||
param.data * self.tau
|
||||
)
|
||||
def save_model(self,path):
|
||||
from pathlib import Path
|
||||
# create path
|
||||
Path(path).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.actor.state_dict(), f"{path}/actor_checkpoint.pt")
|
||||
|
||||
def load_model(self,path):
|
||||
self.actor.load_state_dict(torch.load(f"{path}/actor_checkpoint.pt"))
|
||||
@@ -1,56 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-10 15:28:30
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-09-16 00:52:30
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
class NormalizedActions(gym.ActionWrapper):
|
||||
''' 将action范围重定在[0.1]之间
|
||||
'''
|
||||
def action(self, action):
|
||||
low_bound = self.action_space.low
|
||||
upper_bound = self.action_space.high
|
||||
action = low_bound + (action + 1.0) * 0.5 * (upper_bound - low_bound)
|
||||
action = np.clip(action, low_bound, upper_bound)
|
||||
return action
|
||||
|
||||
def reverse_action(self, action):
|
||||
low_bound = self.action_space.low
|
||||
upper_bound = self.action_space.high
|
||||
action = 2 * (action - low_bound) / (upper_bound - low_bound) - 1
|
||||
action = np.clip(action, low_bound, upper_bound)
|
||||
return action
|
||||
|
||||
class OUNoise(object):
|
||||
'''Ornstein–Uhlenbeck噪声
|
||||
'''
|
||||
def __init__(self, action_space, mu=0.0, theta=0.15, max_sigma=0.3, min_sigma=0.3, decay_period=100000):
|
||||
self.mu = mu # OU噪声的参数
|
||||
self.theta = theta # OU噪声的参数
|
||||
self.sigma = max_sigma # OU噪声的参数
|
||||
self.max_sigma = max_sigma
|
||||
self.min_sigma = min_sigma
|
||||
self.decay_period = decay_period
|
||||
self.n_actions = action_space.shape[0]
|
||||
self.low = action_space.low
|
||||
self.high = action_space.high
|
||||
self.reset()
|
||||
def reset(self):
|
||||
self.obs = np.ones(self.n_actions) * self.mu
|
||||
def evolve_obs(self):
|
||||
x = self.obs
|
||||
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.n_actions)
|
||||
self.obs = x + dx
|
||||
return self.obs
|
||||
def get_action(self, action, t=0):
|
||||
ou_obs = self.evolve_obs()
|
||||
self.sigma = self.max_sigma - (self.max_sigma - self.min_sigma) * min(1.0, t / self.decay_period) # sigma会逐渐衰减
|
||||
return np.clip(action + ou_obs, self.low, self.high) # 动作加上噪声后进行剪切
|
||||
@@ -1,152 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 20:58:21
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-09-27 15:50:12
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
|
||||
import datetime
|
||||
import gym
|
||||
import torch
|
||||
import argparse
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from env import NormalizedActions,OUNoise
|
||||
from ddpg import DDPG
|
||||
from common.utils import all_seed
|
||||
from common.memories import ReplayBufferQue
|
||||
from common.launcher import Launcher
|
||||
from envs.register import register_env
|
||||
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
|
||||
super(Actor, self).__init__()
|
||||
self.linear1 = nn.Linear(n_states, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, n_actions)
|
||||
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
x = torch.tanh(self.linear3(x))
|
||||
return x
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
|
||||
super(Critic, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, 1)
|
||||
# 随机初始化为较小的值
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
def forward(self, state, action):
|
||||
# 按维数1拼接
|
||||
x = torch.cat([state, action], 1)
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
x = self.linear3(x)
|
||||
return x
|
||||
class Main(Launcher):
|
||||
def get_args(self):
|
||||
""" hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='DDPG',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='Pendulum-v1',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=300,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--max_steps',default=100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--critic_lr',default=1e-3,type=float,help="learning rate of critic")
|
||||
parser.add_argument('--actor_lr',default=1e-4,type=float,help="learning rate of actor")
|
||||
parser.add_argument('--memory_capacity',default=8000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=128,type=int)
|
||||
parser.add_argument('--target_update',default=2,type=int)
|
||||
parser.add_argument('--tau',default=1e-2,type=float)
|
||||
parser.add_argument('--critic_hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--actor_hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=1,type=int,help="random seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
|
||||
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
|
||||
}
|
||||
args = {**vars(args),**default_args} # type(dict)
|
||||
return args
|
||||
|
||||
def env_agent_config(self,cfg):
|
||||
register_env(cfg['env_name'])
|
||||
env = gym.make(cfg['env_name'])
|
||||
env = NormalizedActions(env) # decorate with action noise
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
models = {"actor":Actor(n_states,n_actions,hidden_dim=cfg['actor_hidden_dim']),"critic":Critic(n_states,n_actions,hidden_dim=cfg['critic_hidden_dim'])}
|
||||
memories = {"memory":ReplayBufferQue(cfg['memory_capacity'])}
|
||||
agent = DDPG(models,memories,cfg)
|
||||
return env,agent
|
||||
def train(self,cfg, env, agent):
|
||||
print('Start training!')
|
||||
ou_noise = OUNoise(env.action_space) # noise of action
|
||||
rewards = [] # record rewards for all episodes
|
||||
for i_ep in range(cfg['train_eps']):
|
||||
state = env.reset()
|
||||
ou_noise.reset()
|
||||
ep_reward = 0
|
||||
for i_step in range(cfg['max_steps']):
|
||||
action = agent.sample_action(state)
|
||||
action = ou_noise.get_action(action, i_step+1)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push((state, action, reward, next_state, done))
|
||||
agent.update()
|
||||
state = next_state
|
||||
if done:
|
||||
break
|
||||
if (i_ep+1)%10 == 0:
|
||||
print(f"Env:{i_ep+1}/{cfg['train_eps']}, Reward:{ep_reward:.2f}")
|
||||
rewards.append(ep_reward)
|
||||
print('Finish training!')
|
||||
return {'rewards':rewards}
|
||||
|
||||
def test(self,cfg, env, agent):
|
||||
print('Start testing!')
|
||||
rewards = [] # record rewards for all episodes
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
for i_step in range(cfg['max_steps']):
|
||||
action = agent.predict_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
state = next_state
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
print(f"Episode:{i_ep+1}/{cfg['test_eps']}, Reward:{ep_reward:.1f}")
|
||||
print('Finish testing!')
|
||||
return {'rewards':rewards}
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
@@ -1,25 +0,0 @@
|
||||
{
|
||||
"algo_name": "DDPG",
|
||||
"env_name": "Pendulum-v1",
|
||||
"train_eps": 300,
|
||||
"test_eps": 20,
|
||||
"max_steps": 100000,
|
||||
"gamma": 0.99,
|
||||
"critic_lr": 0.001,
|
||||
"actor_lr": 0.0001,
|
||||
"memory_capacity": 8000,
|
||||
"batch_size": 128,
|
||||
"target_update": 2,
|
||||
"tau": 0.01,
|
||||
"critic_hidden_dim": 256,
|
||||
"actor_hidden_dim": 256,
|
||||
"device": "cpu",
|
||||
"seed": 1,
|
||||
"show_fig": false,
|
||||
"save_fig": true,
|
||||
"result_path": "/Users/jj/Desktop/rl-tutorials/codes/DDPG/outputs/Pendulum-v1/20220927-155053/results/",
|
||||
"model_path": "/Users/jj/Desktop/rl-tutorials/codes/DDPG/outputs/Pendulum-v1/20220927-155053/models/",
|
||||
"n_states": 3,
|
||||
"n_actions": 1,
|
||||
"training_time": 358.8142900466919
|
||||
}
|
||||
|
Before Width: | Height: | Size: 48 KiB |
@@ -1,21 +0,0 @@
|
||||
rewards
|
||||
-116.045416124376
|
||||
-126.18022935469217
|
||||
-231.46338228458293
|
||||
-246.40481094689758
|
||||
-304.69493818839186
|
||||
-124.39609191913091
|
||||
-1.060003582878406
|
||||
-114.19659653048288
|
||||
-348.9745708742037
|
||||
-116.10811133324769
|
||||
-117.20146333694844
|
||||
-118.66206784602966
|
||||
-235.17836229762355
|
||||
-356.14054913290624
|
||||
-118.38579118156366
|
||||
-351.9415915140771
|
||||
-114.50877866098972
|
||||
-124.775484599685
|
||||
-226.47062962476875
|
||||
-121.48872909193936
|
||||
|
|
Before Width: | Height: | Size: 79 KiB |
@@ -1,301 +0,0 @@
|
||||
rewards
|
||||
-1557.8518596631177
|
||||
-1354.7599369723537
|
||||
-1375.5732016629706
|
||||
-1493.8609739040871
|
||||
-1426.7116204537845
|
||||
-1235.7920755027762
|
||||
-1339.1647620443073
|
||||
-1544.2379906560486
|
||||
-1539.6232758780877
|
||||
-1549.5690058648204
|
||||
-1446.9193195793853
|
||||
-1520.2666688767558
|
||||
-1525.0116707122581
|
||||
-1379.136573640111
|
||||
-1532.702831768523
|
||||
-1484.7552963941637
|
||||
-1359.6699201737677
|
||||
-1349.6805649166854
|
||||
-1510.869999766432
|
||||
-1515.8398785434708
|
||||
-1447.4648656578254
|
||||
-1537.3822077872178
|
||||
-1249.6517039877456
|
||||
-1350.0302666965736
|
||||
-1529.4363372505607
|
||||
-1320.28204807604
|
||||
-1502.9248141320654
|
||||
-1545.4861772197075
|
||||
-1579.928789692619
|
||||
-1413.296070504152
|
||||
-1242.4673258663781
|
||||
-1403.8672028946078
|
||||
-1452.7199002523635
|
||||
-871.6071114009982
|
||||
-1324.1789316121412
|
||||
-1313.3348146041249
|
||||
-1059.8722927418046
|
||||
-1054.232673559123
|
||||
-973.8956270782459
|
||||
-972.9936641224186
|
||||
-972.9477399905655
|
||||
-947.0613443333731
|
||||
-737.3866328989184
|
||||
-958.6068164634295
|
||||
-739.6973395350705
|
||||
-886.8383108399455
|
||||
-775.1430379821574
|
||||
-937.3115016337417
|
||||
-700.875502951337
|
||||
-829.9396339144109
|
||||
-271.1629773396998
|
||||
-493.5460684734584
|
||||
-485.9321719313203
|
||||
-858.3735607086766
|
||||
-1145.3440084994113
|
||||
-1121.1338201339777
|
||||
-1191.5640831332366
|
||||
-1350.0425368846784
|
||||
-249.25438665107953
|
||||
-727.9051714734406
|
||||
-368.5579316240395
|
||||
-392.0611344939354
|
||||
-955.3231703741553
|
||||
-488.27956192035265
|
||||
-362.2734695759137
|
||||
-949.5440839122496
|
||||
-496.8460016912189
|
||||
-726.6871514929877
|
||||
-424.48641462866266
|
||||
-954.7075428204689
|
||||
-608.9650086409792
|
||||
-848.6059768900151
|
||||
-866.7052398755033
|
||||
-856.9846415044439
|
||||
-751.0342976129083
|
||||
-749.5118249469103
|
||||
-509.882299129811
|
||||
-506.56154097018043
|
||||
-906.0964475820368
|
||||
-1318.3941416286855
|
||||
-1422.2017011876615
|
||||
-1523.1661091894277
|
||||
-1209.2850593747999
|
||||
-1415.0972750475833
|
||||
-1533.2263827605834
|
||||
-1405.8345530072663
|
||||
-1244.3384723384913
|
||||
-1237.4704845061992
|
||||
-949.3394417935086
|
||||
-981.1855396112669
|
||||
-1241.224568444032
|
||||
-1033.118364799829
|
||||
-1017.2403725619487
|
||||
-981.9727804516916
|
||||
-853.1877724775591
|
||||
-869.0652369861646
|
||||
-1069.8265343327998
|
||||
-371.73173813891884
|
||||
-735.5887912713665
|
||||
-1262.050240428957
|
||||
-1242.985056062197
|
||||
-1191.6867713427482
|
||||
-1328.5323118458034
|
||||
-1015.5308653784714
|
||||
-895.3066515461381
|
||||
-994.1114862316568
|
||||
-761.4710321387583
|
||||
-717.6979056272868
|
||||
-782.302146467708
|
||||
-640.4913147345328
|
||||
-725.6469893076355
|
||||
-497.5346232085584
|
||||
-1027.1192149202325
|
||||
-950.0117149822681
|
||||
-956.1343737377374
|
||||
-708.9489626669097
|
||||
-964.5003064113283
|
||||
-611.9111516886613
|
||||
-612.3182791021098
|
||||
-1100.0047939174613
|
||||
-984.9262458612923
|
||||
-858.7106075590494
|
||||
-842.305917848386
|
||||
-745.9043991922597
|
||||
-741.2168858394704
|
||||
-1143.0750387284456
|
||||
-755.5257242325362
|
||||
-745.8440029056219
|
||||
-387.8717950334138
|
||||
-764.6628701051523
|
||||
-486.7967495537958
|
||||
-485.13357559164814
|
||||
-313.5415216767419
|
||||
-611.3450529954782
|
||||
-611.1570544377465
|
||||
-507.6456747676814
|
||||
-615.2032627013064
|
||||
-242.37988821149764
|
||||
-603.85498620892
|
||||
-352.2672241055367
|
||||
-155.99874664988383
|
||||
-615.4003063516313
|
||||
-384.9811293551548
|
||||
-498.80727354456315
|
||||
-407.6898591217813
|
||||
-1213.6383844696395
|
||||
-1122.2425748913884
|
||||
-592.4819308883913
|
||||
-478.2046833075051
|
||||
-891.0254788311132
|
||||
-482.40204115385
|
||||
-339.34676196677407
|
||||
-582.9985110154428
|
||||
-213.38243627478826
|
||||
-928.8434951613825
|
||||
-1545.5433749195483
|
||||
-1179.5016285049896
|
||||
-1211.9549773601925
|
||||
-1396.8082561792166
|
||||
-1318.073128824395
|
||||
-597.3837225413702
|
||||
-564.7793352410449
|
||||
-723.744223659601
|
||||
-653.0145534050461
|
||||
-847.6138123247009
|
||||
-385.62784320332867
|
||||
-245.25250602651928
|
||||
-117.55094416757835
|
||||
-864.0064774069044
|
||||
-124.30221387458867
|
||||
-244.4014050243669
|
||||
-1148.861754008653
|
||||
-914.4047868424254
|
||||
-765.9394408203351
|
||||
-124.05114610943177
|
||||
-605.7641303826842
|
||||
-616.3595829453579
|
||||
-375.5024692962698
|
||||
-253.51874076866997
|
||||
-240.08405245866714
|
||||
-503.96565579077225
|
||||
-606.7646526173963
|
||||
-502.6512112729435
|
||||
-746.404013238678
|
||||
-718.8658110051653
|
||||
-125.65808359856703
|
||||
-247.62256797883364
|
||||
-363.69852213666803
|
||||
-249.21801061415547
|
||||
-491.7724416523124
|
||||
-235.37050442527357
|
||||
-609.6026403583944
|
||||
-236.05731608228092
|
||||
-381.19853850450454
|
||||
-298.7683201867404
|
||||
-127.64145601534942
|
||||
-233.4300138495176
|
||||
-129.11243486763516
|
||||
-390.0092951263507
|
||||
-1000.7729892969854
|
||||
-249.60445310459787
|
||||
-253.02347910759622
|
||||
-129.04269174391223
|
||||
-360.6321251486308
|
||||
-377.26297602576534
|
||||
-124.98466986009481
|
||||
-245.47913567739212
|
||||
-127.0885254550411
|
||||
-118.11013006825459
|
||||
-128.8682755001942
|
||||
-497.3015586531096
|
||||
-340.77352433313484
|
||||
-514.4945799737978
|
||||
-503.24077308842783
|
||||
-627.9068157464455
|
||||
-511.39396524392146
|
||||
-763.8866112068075
|
||||
-741.7885082408757
|
||||
-617.4945380476306
|
||||
-950.3176437519387
|
||||
-643.4791402436576
|
||||
-511.9377874351982
|
||||
-573.6219349516633
|
||||
-564.1297823875693
|
||||
-242.06399233336583
|
||||
-496.4020380325518
|
||||
-360.56387982880364
|
||||
-495.4590728336022
|
||||
-503.7263345016764
|
||||
-122.47964616802327
|
||||
-254.16543926263168
|
||||
-614.5335268729743
|
||||
-234.3718017676852
|
||||
-301.27514663062874
|
||||
-387.64758894986204
|
||||
-368.74492411716415
|
||||
-364.43559131093593
|
||||
-160.6845848115533
|
||||
-504.1948947975429
|
||||
-246.51676032967683
|
||||
-251.5732500220603
|
||||
-600.1463819723879
|
||||
-247.17476928471288
|
||||
-381.924164337607
|
||||
-377.4773226068174
|
||||
-378.511830774651
|
||||
-126.69199895843033
|
||||
-365.0506645811703
|
||||
-130.45052114802874
|
||||
-374.37400288581813
|
||||
-502.37678159638887
|
||||
-374.43552658473055
|
||||
-241.157211525502
|
||||
-388.9597456642503
|
||||
-249.4412385534861
|
||||
-114.71395078439846
|
||||
-864.6882327286056
|
||||
-626.8144095971478
|
||||
-732.9226896140248
|
||||
-368.24767905020394
|
||||
-369.7425524469132
|
||||
-398.07832598184626
|
||||
-906.7113918582257
|
||||
-252.2343258180765
|
||||
-370.4258473086036
|
||||
-736.0203154396909
|
||||
-609.4605173515027
|
||||
-661.1255920773486
|
||||
-489.9605291008584
|
||||
-364.1671188501402
|
||||
-644.4029089587781
|
||||
-477.9510457677364
|
||||
-128.78294672880136
|
||||
-373.74382001694886
|
||||
-380.69931133982936
|
||||
-372.60275628381805
|
||||
-743.0410655515724
|
||||
-597.558847789258
|
||||
-387.94245652694394
|
||||
-725.3939448944484
|
||||
-409.1301313430852
|
||||
-491.8442467896486
|
||||
-123.0638156839621
|
||||
-377.9292326597324
|
||||
-489.27209762667974
|
||||
-255.63227821371257
|
||||
-379.5885382060625
|
||||
-370.2312967024669
|
||||
-250.94061817008688
|
||||
-131.2125308195906
|
||||
-600.3312016651868
|
||||
-130.84444772735733
|
||||
-312.6287688438562
|
||||
-382.4144610039701
|
||||
-259.03558003697265
|
||||
-224.92206667096863
|
||||
-376.81390821359685
|
||||
-382.39993489751646
|
||||
-380.25599578593636
|
||||
-610.1016672243638
|
||||
|
@@ -1,25 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
eval_per_episode: 5
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_DQN_20221031-001201
|
||||
max_steps: 200
|
||||
mode: test
|
||||
save_fig: true
|
||||
seed: 0
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
hidden_dim: 256
|
||||
lr: 0.0001
|
||||
target_update: 4
|
||||
@@ -1,14 +0,0 @@
|
||||
2022-10-31 00:13:43 - r - INFO: - n_states: 4, n_actions: 2
|
||||
2022-10-31 00:13:44 - r - INFO: - Start testing!
|
||||
2022-10-31 00:13:44 - r - INFO: - Env: CartPole-v1, Algorithm: DQN, Device: cuda
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 1/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 2/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 3/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 4/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 5/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 6/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 7/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 8/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 9/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 10/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Finish testing!
|
||||
|
Before Width: | Height: | Size: 25 KiB |
@@ -1,11 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,200.0,200
|
||||
1,200.0,200
|
||||
2,200.0,200
|
||||
3,200.0,200
|
||||
4,200.0,200
|
||||
5,200.0,200
|
||||
6,200.0,200
|
||||
7,200.0,200
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
|
@@ -1,23 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: Acrobot-v1
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 100000
|
||||
mode: train
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 128
|
||||
buffer_size: 200000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
hidden_dim: 256
|
||||
lr: 0.002
|
||||
target_update: 4
|
||||
@@ -1,104 +0,0 @@
|
||||
2022-10-26 09:46:45 - r - INFO: - n_states: 6, n_actions: 3
|
||||
2022-10-26 09:46:48 - r - INFO: - Start training!
|
||||
2022-10-26 09:46:48 - r - INFO: - Env: Acrobot-v1, Algorithm: DQN, Device: cuda
|
||||
2022-10-26 09:46:50 - r - INFO: - Episode: 1/100, Reward: -861.00: Epislon: 0.178
|
||||
2022-10-26 09:46:50 - r - INFO: - Episode: 2/100, Reward: -252.00: Epislon: 0.111
|
||||
2022-10-26 09:46:50 - r - INFO: - Episode: 3/100, Reward: -196.00: Epislon: 0.078
|
||||
2022-10-26 09:46:51 - r - INFO: - Episode: 4/100, Reward: -390.00: Epislon: 0.041
|
||||
2022-10-26 09:46:52 - r - INFO: - Episode: 5/100, Reward: -371.00: Epislon: 0.025
|
||||
2022-10-26 09:46:52 - r - INFO: - Episode: 6/100, Reward: -237.00: Epislon: 0.019
|
||||
2022-10-26 09:46:52 - r - INFO: - Episode: 7/100, Reward: -227.00: Epislon: 0.016
|
||||
2022-10-26 09:46:53 - r - INFO: - Episode: 8/100, Reward: -228.00: Epislon: 0.014
|
||||
2022-10-26 09:46:53 - r - INFO: - Episode: 9/100, Reward: -305.00: Epislon: 0.012
|
||||
2022-10-26 09:46:54 - r - INFO: - Episode: 10/100, Reward: -234.00: Epislon: 0.011
|
||||
2022-10-26 09:46:54 - r - INFO: - Episode: 11/100, Reward: -204.00: Epislon: 0.011
|
||||
2022-10-26 09:46:55 - r - INFO: - Episode: 12/100, Reward: -277.00: Epislon: 0.010
|
||||
2022-10-26 09:46:55 - r - INFO: - Episode: 13/100, Reward: -148.00: Epislon: 0.010
|
||||
2022-10-26 09:46:56 - r - INFO: - Episode: 14/100, Reward: -372.00: Epislon: 0.010
|
||||
2022-10-26 09:46:56 - r - INFO: - Episode: 15/100, Reward: -273.00: Epislon: 0.010
|
||||
2022-10-26 09:46:56 - r - INFO: - Episode: 16/100, Reward: -105.00: Epislon: 0.010
|
||||
2022-10-26 09:46:56 - r - INFO: - Episode: 17/100, Reward: -79.00: Epislon: 0.010
|
||||
2022-10-26 09:46:57 - r - INFO: - Episode: 18/100, Reward: -112.00: Epislon: 0.010
|
||||
2022-10-26 09:46:57 - r - INFO: - Episode: 19/100, Reward: -276.00: Epislon: 0.010
|
||||
2022-10-26 09:46:57 - r - INFO: - Episode: 20/100, Reward: -148.00: Epislon: 0.010
|
||||
2022-10-26 09:46:58 - r - INFO: - Episode: 21/100, Reward: -201.00: Epislon: 0.010
|
||||
2022-10-26 09:46:58 - r - INFO: - Episode: 22/100, Reward: -173.00: Epislon: 0.010
|
||||
2022-10-26 09:46:58 - r - INFO: - Episode: 23/100, Reward: -226.00: Epislon: 0.010
|
||||
2022-10-26 09:46:59 - r - INFO: - Episode: 24/100, Reward: -154.00: Epislon: 0.010
|
||||
2022-10-26 09:46:59 - r - INFO: - Episode: 25/100, Reward: -269.00: Epislon: 0.010
|
||||
2022-10-26 09:46:59 - r - INFO: - Episode: 26/100, Reward: -191.00: Epislon: 0.010
|
||||
2022-10-26 09:47:00 - r - INFO: - Episode: 27/100, Reward: -177.00: Epislon: 0.010
|
||||
2022-10-26 09:47:00 - r - INFO: - Episode: 28/100, Reward: -209.00: Epislon: 0.010
|
||||
2022-10-26 09:47:00 - r - INFO: - Episode: 29/100, Reward: -116.00: Epislon: 0.010
|
||||
2022-10-26 09:47:00 - r - INFO: - Episode: 30/100, Reward: -117.00: Epislon: 0.010
|
||||
2022-10-26 09:47:01 - r - INFO: - Episode: 31/100, Reward: -121.00: Epislon: 0.010
|
||||
2022-10-26 09:47:01 - r - INFO: - Episode: 32/100, Reward: -208.00: Epislon: 0.010
|
||||
2022-10-26 09:47:01 - r - INFO: - Episode: 33/100, Reward: -147.00: Epislon: 0.010
|
||||
2022-10-26 09:47:02 - r - INFO: - Episode: 34/100, Reward: -104.00: Epislon: 0.010
|
||||
2022-10-26 09:47:02 - r - INFO: - Episode: 35/100, Reward: -161.00: Epislon: 0.010
|
||||
2022-10-26 09:47:02 - r - INFO: - Episode: 36/100, Reward: -144.00: Epislon: 0.010
|
||||
2022-10-26 09:47:02 - r - INFO: - Episode: 37/100, Reward: -131.00: Epislon: 0.010
|
||||
2022-10-26 09:47:03 - r - INFO: - Episode: 38/100, Reward: -226.00: Epislon: 0.010
|
||||
2022-10-26 09:47:03 - r - INFO: - Episode: 39/100, Reward: -117.00: Epislon: 0.010
|
||||
2022-10-26 09:47:03 - r - INFO: - Episode: 40/100, Reward: -344.00: Epislon: 0.010
|
||||
2022-10-26 09:47:04 - r - INFO: - Episode: 41/100, Reward: -123.00: Epislon: 0.010
|
||||
2022-10-26 09:47:04 - r - INFO: - Episode: 42/100, Reward: -232.00: Epislon: 0.010
|
||||
2022-10-26 09:47:04 - r - INFO: - Episode: 43/100, Reward: -190.00: Epislon: 0.010
|
||||
2022-10-26 09:47:05 - r - INFO: - Episode: 44/100, Reward: -176.00: Epislon: 0.010
|
||||
2022-10-26 09:47:05 - r - INFO: - Episode: 45/100, Reward: -139.00: Epislon: 0.010
|
||||
2022-10-26 09:47:06 - r - INFO: - Episode: 46/100, Reward: -410.00: Epislon: 0.010
|
||||
2022-10-26 09:47:06 - r - INFO: - Episode: 47/100, Reward: -115.00: Epislon: 0.010
|
||||
2022-10-26 09:47:06 - r - INFO: - Episode: 48/100, Reward: -118.00: Epislon: 0.010
|
||||
2022-10-26 09:47:06 - r - INFO: - Episode: 49/100, Reward: -113.00: Epislon: 0.010
|
||||
2022-10-26 09:47:07 - r - INFO: - Episode: 50/100, Reward: -355.00: Epislon: 0.010
|
||||
2022-10-26 09:47:07 - r - INFO: - Episode: 51/100, Reward: -110.00: Epislon: 0.010
|
||||
2022-10-26 09:47:07 - r - INFO: - Episode: 52/100, Reward: -148.00: Epislon: 0.010
|
||||
2022-10-26 09:47:08 - r - INFO: - Episode: 53/100, Reward: -135.00: Epislon: 0.010
|
||||
2022-10-26 09:47:08 - r - INFO: - Episode: 54/100, Reward: -220.00: Epislon: 0.010
|
||||
2022-10-26 09:47:08 - r - INFO: - Episode: 55/100, Reward: -157.00: Epislon: 0.010
|
||||
2022-10-26 09:47:09 - r - INFO: - Episode: 56/100, Reward: -130.00: Epislon: 0.010
|
||||
2022-10-26 09:47:09 - r - INFO: - Episode: 57/100, Reward: -150.00: Epislon: 0.010
|
||||
2022-10-26 09:47:09 - r - INFO: - Episode: 58/100, Reward: -254.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 59/100, Reward: -148.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 60/100, Reward: -108.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 61/100, Reward: -152.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 62/100, Reward: -107.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 63/100, Reward: -110.00: Epislon: 0.010
|
||||
2022-10-26 09:47:11 - r - INFO: - Episode: 64/100, Reward: -266.00: Epislon: 0.010
|
||||
2022-10-26 09:47:11 - r - INFO: - Episode: 65/100, Reward: -344.00: Epislon: 0.010
|
||||
2022-10-26 09:47:12 - r - INFO: - Episode: 66/100, Reward: -93.00: Epislon: 0.010
|
||||
2022-10-26 09:47:12 - r - INFO: - Episode: 67/100, Reward: -113.00: Epislon: 0.010
|
||||
2022-10-26 09:47:12 - r - INFO: - Episode: 68/100, Reward: -191.00: Epislon: 0.010
|
||||
2022-10-26 09:47:12 - r - INFO: - Episode: 69/100, Reward: -102.00: Epislon: 0.010
|
||||
2022-10-26 09:47:13 - r - INFO: - Episode: 70/100, Reward: -187.00: Epislon: 0.010
|
||||
2022-10-26 09:47:13 - r - INFO: - Episode: 71/100, Reward: -158.00: Epislon: 0.010
|
||||
2022-10-26 09:47:13 - r - INFO: - Episode: 72/100, Reward: -166.00: Epislon: 0.010
|
||||
2022-10-26 09:47:14 - r - INFO: - Episode: 73/100, Reward: -202.00: Epislon: 0.010
|
||||
2022-10-26 09:47:14 - r - INFO: - Episode: 74/100, Reward: -179.00: Epislon: 0.010
|
||||
2022-10-26 09:47:14 - r - INFO: - Episode: 75/100, Reward: -150.00: Epislon: 0.010
|
||||
2022-10-26 09:47:14 - r - INFO: - Episode: 76/100, Reward: -170.00: Epislon: 0.010
|
||||
2022-10-26 09:47:15 - r - INFO: - Episode: 77/100, Reward: -149.00: Epislon: 0.010
|
||||
2022-10-26 09:47:15 - r - INFO: - Episode: 78/100, Reward: -119.00: Epislon: 0.010
|
||||
2022-10-26 09:47:15 - r - INFO: - Episode: 79/100, Reward: -115.00: Epislon: 0.010
|
||||
2022-10-26 09:47:15 - r - INFO: - Episode: 80/100, Reward: -97.00: Epislon: 0.010
|
||||
2022-10-26 09:47:16 - r - INFO: - Episode: 81/100, Reward: -153.00: Epislon: 0.010
|
||||
2022-10-26 09:47:16 - r - INFO: - Episode: 82/100, Reward: -97.00: Epislon: 0.010
|
||||
2022-10-26 09:47:16 - r - INFO: - Episode: 83/100, Reward: -211.00: Epislon: 0.010
|
||||
2022-10-26 09:47:16 - r - INFO: - Episode: 84/100, Reward: -195.00: Epislon: 0.010
|
||||
2022-10-26 09:47:17 - r - INFO: - Episode: 85/100, Reward: -125.00: Epislon: 0.010
|
||||
2022-10-26 09:47:17 - r - INFO: - Episode: 86/100, Reward: -155.00: Epislon: 0.010
|
||||
2022-10-26 09:47:17 - r - INFO: - Episode: 87/100, Reward: -151.00: Epislon: 0.010
|
||||
2022-10-26 09:47:18 - r - INFO: - Episode: 88/100, Reward: -194.00: Epislon: 0.010
|
||||
2022-10-26 09:47:18 - r - INFO: - Episode: 89/100, Reward: -188.00: Epislon: 0.010
|
||||
2022-10-26 09:47:18 - r - INFO: - Episode: 90/100, Reward: -195.00: Epislon: 0.010
|
||||
2022-10-26 09:47:19 - r - INFO: - Episode: 91/100, Reward: -141.00: Epislon: 0.010
|
||||
2022-10-26 09:47:19 - r - INFO: - Episode: 92/100, Reward: -132.00: Epislon: 0.010
|
||||
2022-10-26 09:47:19 - r - INFO: - Episode: 93/100, Reward: -127.00: Epislon: 0.010
|
||||
2022-10-26 09:47:19 - r - INFO: - Episode: 94/100, Reward: -195.00: Epislon: 0.010
|
||||
2022-10-26 09:47:20 - r - INFO: - Episode: 95/100, Reward: -152.00: Epislon: 0.010
|
||||
2022-10-26 09:47:20 - r - INFO: - Episode: 96/100, Reward: -145.00: Epislon: 0.010
|
||||
2022-10-26 09:47:20 - r - INFO: - Episode: 97/100, Reward: -123.00: Epislon: 0.010
|
||||
2022-10-26 09:47:20 - r - INFO: - Episode: 98/100, Reward: -176.00: Epislon: 0.010
|
||||
2022-10-26 09:47:21 - r - INFO: - Episode: 99/100, Reward: -180.00: Epislon: 0.010
|
||||
2022-10-26 09:47:21 - r - INFO: - Episode: 100/100, Reward: -124.00: Epislon: 0.010
|
||||
2022-10-26 09:47:21 - r - INFO: - Finish training!
|
||||
|
Before Width: | Height: | Size: 55 KiB |
@@ -1,101 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,-861.0,862
|
||||
1,-252.0,253
|
||||
2,-196.0,197
|
||||
3,-390.0,391
|
||||
4,-371.0,372
|
||||
5,-237.0,238
|
||||
6,-227.0,228
|
||||
7,-228.0,229
|
||||
8,-305.0,306
|
||||
9,-234.0,235
|
||||
10,-204.0,205
|
||||
11,-277.0,278
|
||||
12,-148.0,149
|
||||
13,-372.0,373
|
||||
14,-273.0,274
|
||||
15,-105.0,106
|
||||
16,-79.0,80
|
||||
17,-112.0,113
|
||||
18,-276.0,277
|
||||
19,-148.0,149
|
||||
20,-201.0,202
|
||||
21,-173.0,174
|
||||
22,-226.0,227
|
||||
23,-154.0,155
|
||||
24,-269.0,270
|
||||
25,-191.0,192
|
||||
26,-177.0,178
|
||||
27,-209.0,210
|
||||
28,-116.0,117
|
||||
29,-117.0,118
|
||||
30,-121.0,122
|
||||
31,-208.0,209
|
||||
32,-147.0,148
|
||||
33,-104.0,105
|
||||
34,-161.0,162
|
||||
35,-144.0,145
|
||||
36,-131.0,132
|
||||
37,-226.0,227
|
||||
38,-117.0,118
|
||||
39,-344.0,345
|
||||
40,-123.0,124
|
||||
41,-232.0,233
|
||||
42,-190.0,191
|
||||
43,-176.0,177
|
||||
44,-139.0,140
|
||||
45,-410.0,411
|
||||
46,-115.0,116
|
||||
47,-118.0,119
|
||||
48,-113.0,114
|
||||
49,-355.0,356
|
||||
50,-110.0,111
|
||||
51,-148.0,149
|
||||
52,-135.0,136
|
||||
53,-220.0,221
|
||||
54,-157.0,158
|
||||
55,-130.0,131
|
||||
56,-150.0,151
|
||||
57,-254.0,255
|
||||
58,-148.0,149
|
||||
59,-108.0,109
|
||||
60,-152.0,153
|
||||
61,-107.0,108
|
||||
62,-110.0,111
|
||||
63,-266.0,267
|
||||
64,-344.0,345
|
||||
65,-93.0,94
|
||||
66,-113.0,114
|
||||
67,-191.0,192
|
||||
68,-102.0,103
|
||||
69,-187.0,188
|
||||
70,-158.0,159
|
||||
71,-166.0,167
|
||||
72,-202.0,203
|
||||
73,-179.0,180
|
||||
74,-150.0,151
|
||||
75,-170.0,171
|
||||
76,-149.0,150
|
||||
77,-119.0,120
|
||||
78,-115.0,116
|
||||
79,-97.0,98
|
||||
80,-153.0,154
|
||||
81,-97.0,98
|
||||
82,-211.0,212
|
||||
83,-195.0,196
|
||||
84,-125.0,126
|
||||
85,-155.0,156
|
||||
86,-151.0,152
|
||||
87,-194.0,195
|
||||
88,-188.0,189
|
||||
89,-195.0,196
|
||||
90,-141.0,142
|
||||
91,-132.0,133
|
||||
92,-127.0,128
|
||||
93,-195.0,196
|
||||
94,-152.0,153
|
||||
95,-145.0,146
|
||||
96,-123.0,124
|
||||
97,-176.0,177
|
||||
98,-180.0,181
|
||||
99,-124.0,125
|
||||
|
@@ -1,25 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
eval_per_episode: 5
|
||||
load_checkpoint: false
|
||||
load_path: tasks
|
||||
max_steps: 200
|
||||
mode: train
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
hidden_dim: 256
|
||||
lr: 0.0001
|
||||
target_update: 800
|
||||
@@ -1,116 +0,0 @@
|
||||
2022-10-31 00:12:01 - r - INFO: - n_states: 4, n_actions: 2
|
||||
2022-10-31 00:12:01 - r - INFO: - Start training!
|
||||
2022-10-31 00:12:01 - r - INFO: - Env: CartPole-v1, Algorithm: DQN, Device: cuda
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 1/100, Reward: 18.0, Step: 18
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 2/100, Reward: 35.0, Step: 35
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 3/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 4/100, Reward: 32.0, Step: 32
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 5/100, Reward: 16.0, Step: 16
|
||||
2022-10-31 00:12:04 - r - INFO: - Current episode 5 has the best eval reward: 15.30
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 6/100, Reward: 12.0, Step: 12
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 7/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 8/100, Reward: 15.0, Step: 15
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 9/100, Reward: 11.0, Step: 11
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 10/100, Reward: 15.0, Step: 15
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 11/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 12/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 13/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 14/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 15/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 16/100, Reward: 24.0, Step: 24
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 17/100, Reward: 8.0, Step: 8
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 18/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 19/100, Reward: 11.0, Step: 11
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 20/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 21/100, Reward: 12.0, Step: 12
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 22/100, Reward: 11.0, Step: 11
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 23/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 24/100, Reward: 21.0, Step: 21
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 25/100, Reward: 14.0, Step: 14
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 26/100, Reward: 12.0, Step: 12
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 27/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 28/100, Reward: 11.0, Step: 11
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 29/100, Reward: 12.0, Step: 12
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 30/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 31/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 32/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 33/100, Reward: 18.0, Step: 18
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 34/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 35/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 36/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 37/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 38/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 39/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 40/100, Reward: 8.0, Step: 8
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 41/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 42/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 43/100, Reward: 20.0, Step: 20
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 44/100, Reward: 16.0, Step: 16
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 45/100, Reward: 17.0, Step: 17
|
||||
2022-10-31 00:12:06 - r - INFO: - Current episode 45 has the best eval reward: 17.50
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 46/100, Reward: 17.0, Step: 17
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 47/100, Reward: 17.0, Step: 17
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 48/100, Reward: 18.0, Step: 18
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 49/100, Reward: 25.0, Step: 25
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 50/100, Reward: 31.0, Step: 31
|
||||
2022-10-31 00:12:06 - r - INFO: - Current episode 50 has the best eval reward: 24.80
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 51/100, Reward: 22.0, Step: 22
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 52/100, Reward: 39.0, Step: 39
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 53/100, Reward: 36.0, Step: 36
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 54/100, Reward: 26.0, Step: 26
|
||||
2022-10-31 00:12:07 - r - INFO: - Episode: 55/100, Reward: 33.0, Step: 33
|
||||
2022-10-31 00:12:07 - r - INFO: - Current episode 55 has the best eval reward: 38.70
|
||||
2022-10-31 00:12:07 - r - INFO: - Episode: 56/100, Reward: 56.0, Step: 56
|
||||
2022-10-31 00:12:07 - r - INFO: - Episode: 57/100, Reward: 112.0, Step: 112
|
||||
2022-10-31 00:12:07 - r - INFO: - Episode: 58/100, Reward: 101.0, Step: 101
|
||||
2022-10-31 00:12:08 - r - INFO: - Episode: 59/100, Reward: 69.0, Step: 69
|
||||
2022-10-31 00:12:08 - r - INFO: - Episode: 60/100, Reward: 75.0, Step: 75
|
||||
2022-10-31 00:12:08 - r - INFO: - Episode: 61/100, Reward: 182.0, Step: 182
|
||||
2022-10-31 00:12:09 - r - INFO: - Episode: 62/100, Reward: 52.0, Step: 52
|
||||
2022-10-31 00:12:09 - r - INFO: - Episode: 63/100, Reward: 67.0, Step: 67
|
||||
2022-10-31 00:12:09 - r - INFO: - Episode: 64/100, Reward: 53.0, Step: 53
|
||||
2022-10-31 00:12:09 - r - INFO: - Episode: 65/100, Reward: 119.0, Step: 119
|
||||
2022-10-31 00:12:10 - r - INFO: - Current episode 65 has the best eval reward: 171.90
|
||||
2022-10-31 00:12:10 - r - INFO: - Episode: 66/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:10 - r - INFO: - Episode: 67/100, Reward: 74.0, Step: 74
|
||||
2022-10-31 00:12:11 - r - INFO: - Episode: 68/100, Reward: 138.0, Step: 138
|
||||
2022-10-31 00:12:11 - r - INFO: - Episode: 69/100, Reward: 149.0, Step: 149
|
||||
2022-10-31 00:12:12 - r - INFO: - Episode: 70/100, Reward: 144.0, Step: 144
|
||||
2022-10-31 00:12:12 - r - INFO: - Current episode 70 has the best eval reward: 173.70
|
||||
2022-10-31 00:12:13 - r - INFO: - Episode: 71/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:13 - r - INFO: - Episode: 72/100, Reward: 198.0, Step: 198
|
||||
2022-10-31 00:12:14 - r - INFO: - Episode: 73/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:14 - r - INFO: - Episode: 74/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:15 - r - INFO: - Episode: 75/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:16 - r - INFO: - Current episode 75 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:16 - r - INFO: - Episode: 76/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:17 - r - INFO: - Episode: 77/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:17 - r - INFO: - Episode: 78/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:18 - r - INFO: - Episode: 79/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:19 - r - INFO: - Episode: 80/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:19 - r - INFO: - Current episode 80 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:20 - r - INFO: - Episode: 81/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:20 - r - INFO: - Episode: 82/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:21 - r - INFO: - Episode: 83/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:21 - r - INFO: - Episode: 84/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:22 - r - INFO: - Episode: 85/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:23 - r - INFO: - Current episode 85 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:23 - r - INFO: - Episode: 86/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:24 - r - INFO: - Episode: 87/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:25 - r - INFO: - Episode: 88/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:25 - r - INFO: - Episode: 89/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:26 - r - INFO: - Episode: 90/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:27 - r - INFO: - Current episode 90 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:27 - r - INFO: - Episode: 91/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:28 - r - INFO: - Episode: 92/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:28 - r - INFO: - Episode: 93/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:29 - r - INFO: - Episode: 94/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:29 - r - INFO: - Episode: 95/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:30 - r - INFO: - Current episode 95 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:31 - r - INFO: - Episode: 96/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:31 - r - INFO: - Episode: 97/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:32 - r - INFO: - Episode: 98/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:32 - r - INFO: - Episode: 99/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:33 - r - INFO: - Episode: 100/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:33 - r - INFO: - Current episode 100 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:33 - r - INFO: - Finish training!
|
||||
|
Before Width: | Height: | Size: 43 KiB |
@@ -1,101 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,18.0,18
|
||||
1,35.0,35
|
||||
2,13.0,13
|
||||
3,32.0,32
|
||||
4,16.0,16
|
||||
5,12.0,12
|
||||
6,13.0,13
|
||||
7,15.0,15
|
||||
8,11.0,11
|
||||
9,15.0,15
|
||||
10,9.0,9
|
||||
11,13.0,13
|
||||
12,13.0,13
|
||||
13,10.0,10
|
||||
14,9.0,9
|
||||
15,24.0,24
|
||||
16,8.0,8
|
||||
17,10.0,10
|
||||
18,11.0,11
|
||||
19,13.0,13
|
||||
20,12.0,12
|
||||
21,11.0,11
|
||||
22,9.0,9
|
||||
23,21.0,21
|
||||
24,14.0,14
|
||||
25,12.0,12
|
||||
26,9.0,9
|
||||
27,11.0,11
|
||||
28,12.0,12
|
||||
29,13.0,13
|
||||
30,10.0,10
|
||||
31,13.0,13
|
||||
32,18.0,18
|
||||
33,9.0,9
|
||||
34,10.0,10
|
||||
35,9.0,9
|
||||
36,10.0,10
|
||||
37,10.0,10
|
||||
38,10.0,10
|
||||
39,8.0,8
|
||||
40,9.0,9
|
||||
41,9.0,9
|
||||
42,20.0,20
|
||||
43,16.0,16
|
||||
44,17.0,17
|
||||
45,17.0,17
|
||||
46,17.0,17
|
||||
47,18.0,18
|
||||
48,25.0,25
|
||||
49,31.0,31
|
||||
50,22.0,22
|
||||
51,39.0,39
|
||||
52,36.0,36
|
||||
53,26.0,26
|
||||
54,33.0,33
|
||||
55,56.0,56
|
||||
56,112.0,112
|
||||
57,101.0,101
|
||||
58,69.0,69
|
||||
59,75.0,75
|
||||
60,182.0,182
|
||||
61,52.0,52
|
||||
62,67.0,67
|
||||
63,53.0,53
|
||||
64,119.0,119
|
||||
65,200.0,200
|
||||
66,74.0,74
|
||||
67,138.0,138
|
||||
68,149.0,149
|
||||
69,144.0,144
|
||||
70,200.0,200
|
||||
71,198.0,198
|
||||
72,200.0,200
|
||||
73,200.0,200
|
||||
74,200.0,200
|
||||
75,200.0,200
|
||||
76,200.0,200
|
||||
77,200.0,200
|
||||
78,200.0,200
|
||||
79,200.0,200
|
||||
80,200.0,200
|
||||
81,200.0,200
|
||||
82,200.0,200
|
||||
83,200.0,200
|
||||
84,200.0,200
|
||||
85,200.0,200
|
||||
86,200.0,200
|
||||
87,200.0,200
|
||||
88,200.0,200
|
||||
89,200.0,200
|
||||
90,200.0,200
|
||||
91,200.0,200
|
||||
92,200.0,200
|
||||
93,200.0,200
|
||||
94,200.0,200
|
||||
95,200.0,200
|
||||
96,200.0,200
|
||||
97,200.0,200
|
||||
98,200.0,200
|
||||
99,200.0,200
|
||||
|
@@ -1,22 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: Acrobot-v1
|
||||
mode: test
|
||||
load_checkpoint: true
|
||||
load_path: Train_Acrobot-v1_DQN_20221026-094645
|
||||
max_steps: 100000
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 128
|
||||
buffer_size: 200000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
lr: 0.002
|
||||
target_update: 4
|
||||
@@ -1,22 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: Acrobot-v1
|
||||
mode: train
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 100000
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 128
|
||||
buffer_size: 200000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
lr: 0.002
|
||||
target_update: 4
|
||||
@@ -1,22 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
mode: test
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_DQN_20221031-001201
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 0
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
lr: 0.0001
|
||||
target_update: 4
|
||||
@@ -1,22 +0,0 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
mode: train
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 0
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 200
|
||||
algo_cfg:
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
lr: 0.0001
|
||||
target_update: 4
|
||||
@@ -1,38 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 00:37:33
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-31 00:11:57
|
||||
Discription: default parameters of DQN
|
||||
'''
|
||||
from common.config import GeneralConfig,AlgoConfig
|
||||
class GeneralConfigDQN(GeneralConfig):
|
||||
def __init__(self) -> None:
|
||||
self.env_name = "CartPole-v1" # name of environment
|
||||
self.algo_name = "DQN" # name of algorithm
|
||||
self.mode = "train" # train or test
|
||||
self.seed = 1 # random seed
|
||||
self.device = "cuda" # device to use
|
||||
self.train_eps = 100 # number of episodes for training
|
||||
self.test_eps = 10 # number of episodes for testing
|
||||
self.max_steps = 200 # max steps for each episode
|
||||
self.load_checkpoint = False
|
||||
self.load_path = "tasks" # path to load model
|
||||
self.show_fig = False # show figure or not
|
||||
self.save_fig = True # save figure or not
|
||||
|
||||
class AlgoConfigDQN(AlgoConfig):
|
||||
def __init__(self) -> None:
|
||||
# set epsilon_start=epsilon_end can obtain fixed epsilon=epsilon_end
|
||||
self.epsilon_start = 0.95 # epsilon start value
|
||||
self.epsilon_end = 0.01 # epsilon end value
|
||||
self.epsilon_decay = 500 # epsilon decay rate
|
||||
self.hidden_dim = 256 # hidden_dim for MLP
|
||||
self.gamma = 0.95 # discount factor
|
||||
self.lr = 0.0001 # learning rate
|
||||
self.buffer_size = 100000 # size of replay buffer
|
||||
self.batch_size = 64 # batch size
|
||||
self.target_update = 800 # target network update frequency per steps
|
||||
@@ -1,130 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:50:49
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-10-31 00:07:19
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
'''off-policy
|
||||
'''
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import random
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
class DQN:
|
||||
def __init__(self,model,memory,cfg):
|
||||
|
||||
self.n_actions = cfg.n_actions
|
||||
self.device = torch.device(cfg.device)
|
||||
self.gamma = cfg.gamma
|
||||
## e-greedy parameters
|
||||
self.sample_count = 0 # sample count for epsilon decay
|
||||
self.epsilon = cfg.epsilon_start
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.batch_size = cfg.batch_size
|
||||
self.target_update = cfg.target_update
|
||||
self.policy_net = model.to(self.device)
|
||||
self.target_net = model.to(self.device)
|
||||
## copy parameters from policy net to target net
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
# self.target_net.load_state_dict(self.policy_net.state_dict()) # or use this to copy parameters
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
self.memory = memory
|
||||
self.update_flag = False
|
||||
|
||||
def sample_action(self, state):
|
||||
''' sample action with e-greedy policy
|
||||
'''
|
||||
self.sample_count += 1
|
||||
# epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
if random.random() > self.epsilon:
|
||||
with torch.no_grad():
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
# @torch.no_grad()
|
||||
# def sample_action(self, state):
|
||||
# ''' sample action with e-greedy policy
|
||||
# '''
|
||||
# self.sample_count += 1
|
||||
# # epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
|
||||
# self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
# math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
# if random.random() > self.epsilon:
|
||||
# state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
# q_values = self.policy_net(state)
|
||||
# action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
|
||||
# else:
|
||||
# action = random.randrange(self.n_actions)
|
||||
# return action
|
||||
def predict_action(self,state):
|
||||
''' predict action
|
||||
'''
|
||||
with torch.no_grad():
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # when transitions in memory donot meet a batch, not update
|
||||
return
|
||||
else:
|
||||
if not self.update_flag:
|
||||
print("Begin to update!")
|
||||
self.update_flag = True
|
||||
# sample a batch of transitions from replay buffer
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
||||
self.batch_size)
|
||||
state_batch = torch.tensor(np.array(state_batch), device=self.device, dtype=torch.float) # shape(batchsize,n_states)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) # shape(batchsize,1)
|
||||
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float).unsqueeze(1) # shape(batchsize,1)
|
||||
next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device, dtype=torch.float) # shape(batchsize,n_states)
|
||||
done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1) # shape(batchsize,1)
|
||||
# print(state_batch.shape,action_batch.shape,reward_batch.shape,next_state_batch.shape,done_batch.shape)
|
||||
# compute current Q(s_t,a), it is 'y_j' in pseucodes
|
||||
q_value_batch = self.policy_net(state_batch).gather(dim=1, index=action_batch) # shape(batchsize,1),requires_grad=True
|
||||
# print(q_values.requires_grad)
|
||||
# compute max(Q(s_t+1,A_t+1)) respects to actions A, next_max_q_value comes from another net and is just regarded as constant for q update formula below, thus should detach to requires_grad=False
|
||||
next_max_q_value_batch = self.target_net(next_state_batch).max(1)[0].detach().unsqueeze(1)
|
||||
# print(q_values.shape,next_q_values.shape)
|
||||
# compute expected q value, for terminal state, done_batch[0]=1, and expected_q_value=rewardcorrespondingly
|
||||
expected_q_value_batch = reward_batch + self.gamma * next_max_q_value_batch* (1-done_batch)
|
||||
# print(expected_q_value_batch.shape,expected_q_value_batch.requires_grad)
|
||||
loss = nn.MSELoss()(q_value_batch, expected_q_value_batch) # shape same to
|
||||
# backpropagation
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
# clip to avoid gradient explosion
|
||||
for param in self.policy_net.parameters():
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step()
|
||||
if self.sample_count % self.target_update == 0: # target net update, target_update means "C" in pseucodes
|
||||
self.target_net.load_state_dict(self.policy_net.state_dict())
|
||||
|
||||
def save_model(self, fpath):
|
||||
from pathlib import Path
|
||||
# create path
|
||||
Path(fpath).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.target_net.state_dict(), f"{fpath}/checkpoint.pt")
|
||||
|
||||
def load_model(self, fpath):
|
||||
self.target_net.load_state_dict(torch.load(f"{fpath}/checkpoint.pt"))
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
param.data.copy_(target_param.data)
|
||||
@@ -1,138 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-12 11:09:54
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-31 00:13:31
|
||||
Discription: CartPole-v1,Acrobot-v1
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
import gym
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.models import MLP
|
||||
from common.memories import ReplayBuffer
|
||||
from common.launcher import Launcher
|
||||
from envs.register import register_env
|
||||
from dqn import DQN
|
||||
from config.config import GeneralConfigDQN,AlgoConfigDQN
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigDQN())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigDQN())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=True) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed=cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
# cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
model = MLP(n_states,n_actions,hidden_dim=cfg.hidden_dim)
|
||||
memory = ReplayBuffer(cfg.buffer_size) # replay buffer
|
||||
agent = DQN(model,memory,cfg) # create agent
|
||||
return env, agent
|
||||
def train_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
ep_step += 1
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
|
||||
agent.memory.push(state, action, reward,
|
||||
next_state, terminated) # save transitions
|
||||
agent.update() # update agent
|
||||
state = next_state # update next state for env
|
||||
ep_reward += reward #
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
def test_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
ep_step += 1
|
||||
action = agent.predict_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
|
||||
state = next_state # update next state for env
|
||||
ep_reward += reward #
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
# def train(self,env, agent,cfg,logger):
|
||||
# ''' 训练
|
||||
# '''
|
||||
# logger.info("Start training!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.train_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# ep_step += 1
|
||||
# action = agent.sample_action(state) # sample action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
|
||||
# agent.memory.push(state, action, reward,
|
||||
# next_state, terminated) # save transitions
|
||||
# state = next_state # update next state for env
|
||||
# agent.update() # update agent
|
||||
# ep_reward += reward #
|
||||
# if terminated:
|
||||
# break
|
||||
# if (i_ep + 1) % cfg.target_update == 0: # target net update, target_update means "C" in pseucodes
|
||||
# agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
# steps.append(ep_step)
|
||||
# rewards.append(ep_reward)
|
||||
# logger.info(f'Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
|
||||
# logger.info("Finish training!")
|
||||
# env.close()
|
||||
# res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
# return res_dic
|
||||
|
||||
# def test(self,cfg, env, agent,logger):
|
||||
# logger.info("Start testing!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.test_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# ep_step+=1
|
||||
# action = agent.predict_action(state) # predict action
|
||||
# next_state, reward, terminated, _, _ = env.step(action)
|
||||
# state = next_state
|
||||
# ep_reward += reward
|
||||
# if terminated:
|
||||
# break
|
||||
# steps.append(ep_step)
|
||||
# rewards.append(ep_reward)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}")
|
||||
# logger.info("Finish testing!")
|
||||
# env.close()
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
@@ -1,221 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-24 08:21:31
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-26 09:50:49
|
||||
Discription: Not finished
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
import numpy as np
|
||||
import argparse
|
||||
from common.utils import all_seed
|
||||
from common.models import MLP
|
||||
from common.memories import ReplayBuffer
|
||||
from common.launcher import Launcher
|
||||
from envs.register import register_env
|
||||
from dqn import DQN
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision.transforms as T
|
||||
from PIL import Image
|
||||
resize = T.Compose([T.ToPILImage(),
|
||||
T.Resize(40, interpolation=Image.CUBIC),
|
||||
T.ToTensor()])
|
||||
|
||||
# xvfb-run -s "-screen 0 640x480x24" python main1.py
|
||||
def get_cart_location(env,screen_width):
|
||||
world_width = env.x_threshold * 2
|
||||
scale = screen_width / world_width
|
||||
return int(env.state[0] * scale + screen_width / 2.0) # MIDDLE OF CART
|
||||
|
||||
def get_screen(env):
|
||||
# Returned screen requested by gym is 400x600x3, but is sometimes larger
|
||||
# such as 800x1200x3. Transpose it into torch order (CHW).
|
||||
screen = env.render().transpose((2, 0, 1))
|
||||
# Cart is in the lower half, so strip off the top and bottom of the screen
|
||||
_, screen_height, screen_width = screen.shape
|
||||
screen = screen[:, int(screen_height*0.4):int(screen_height * 0.8)]
|
||||
view_width = int(screen_width * 0.6)
|
||||
cart_location = get_cart_location(env,screen_width)
|
||||
if cart_location < view_width // 2:
|
||||
slice_range = slice(view_width)
|
||||
elif cart_location > (screen_width - view_width // 2):
|
||||
slice_range = slice(-view_width, None)
|
||||
else:
|
||||
slice_range = slice(cart_location - view_width // 2,
|
||||
cart_location + view_width // 2)
|
||||
# Strip off the edges, so that we have a square image centered on a cart
|
||||
screen = screen[:, :, slice_range]
|
||||
# Convert to float, rescale, convert to torch tensor
|
||||
# (this doesn't require a copy)
|
||||
screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
|
||||
screen = torch.from_numpy(screen)
|
||||
# Resize, and add a batch dimension (BCHW)
|
||||
return resize(screen)
|
||||
|
||||
|
||||
class CNN(nn.Module):
|
||||
|
||||
def __init__(self, h, w, outputs):
|
||||
super(CNN, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2)
|
||||
self.bn1 = nn.BatchNorm2d(16)
|
||||
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2)
|
||||
self.bn2 = nn.BatchNorm2d(32)
|
||||
self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2)
|
||||
self.bn3 = nn.BatchNorm2d(32)
|
||||
|
||||
# Number of Linear input connections depends on output of conv2d layers
|
||||
# and therefore the input image size, so compute it.
|
||||
def conv2d_size_out(size, kernel_size = 5, stride = 2):
|
||||
return (size - (kernel_size - 1) - 1) // stride + 1
|
||||
convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w)))
|
||||
convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h)))
|
||||
linear_input_size = convw * convh * 32
|
||||
self.head = nn.Linear(linear_input_size, outputs)
|
||||
|
||||
# Called with either one element to determine next action, or a batch
|
||||
# during optimization. Returns tensor([[left0exp,right0exp]...]).
|
||||
def forward(self, x):
|
||||
x = F.relu(self.bn1(self.conv1(x)))
|
||||
x = F.relu(self.bn2(self.conv2(x)))
|
||||
x = F.relu(self.bn3(self.conv3(x)))
|
||||
return self.head(x.view(x.size(0), -1))
|
||||
class Main(Launcher):
|
||||
def get_args(self):
|
||||
""" hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v1',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=800,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
||||
parser.add_argument('--gamma',default=0.999,type=float,help="discounted factor")
|
||||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon, the higher value, the slower decay")
|
||||
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
|
||||
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=128,type=int)
|
||||
parser.add_argument('--target_update',default=4,type=int)
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cuda',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
# please manually change the following args in this script if you want
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models' )
|
||||
args = parser.parse_args()
|
||||
args = {**vars(args)} # type(dict)
|
||||
return args
|
||||
|
||||
def env_agent_config(self,cfg):
|
||||
''' create env and agent
|
||||
'''
|
||||
env = gym.make('CartPole-v1', new_step_api=True, render_mode='single_rgb_array').unwrapped
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
env.reset()
|
||||
init_screen = get_screen(env)
|
||||
_, screen_height, screen_width = init_screen.shape
|
||||
model = CNN(screen_height, screen_width, n_actions)
|
||||
memory = ReplayBuffer(cfg["memory_capacity"]) # replay buffer
|
||||
agent = DQN(model,memory,cfg) # create agent
|
||||
return env, agent
|
||||
|
||||
def train(self,cfg, env, agent):
|
||||
''' 训练
|
||||
'''
|
||||
print("Start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = []
|
||||
for i_ep in range(cfg["train_eps"]):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
last_screen = get_screen(env)
|
||||
current_screen = get_screen(env)
|
||||
state = current_screen - last_screen
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
ep_step += 1
|
||||
action = agent.sample_action(state) # sample action
|
||||
_, reward, done, _,_ = env.step(action) # update env and return transitions
|
||||
last_screen = current_screen
|
||||
current_screen = get_screen(env)
|
||||
next_state = current_screen - last_screen
|
||||
agent.memory.push(state.cpu().numpy(), action, reward,
|
||||
next_state.cpu().numpy(), done) # save transitions
|
||||
state = next_state # update next state for env
|
||||
agent.update() # update agent
|
||||
ep_reward += reward #
|
||||
if done:
|
||||
break
|
||||
if (i_ep + 1) % cfg["target_update"] == 0: # target net update, target_update means "C" in pseucodes
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
if (i_ep + 1) % 10 == 0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, step: {ep_step:d}, Epislon: {agent.epsilon:.3f}')
|
||||
print("Finish training!")
|
||||
env.close()
|
||||
res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
return res_dic
|
||||
|
||||
def test(self,cfg, env, agent):
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = []
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
last_screen = get_screen(env)
|
||||
current_screen = get_screen(env)
|
||||
state = current_screen - last_screen
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
ep_step+=1
|
||||
action = agent.predict_action(state) # predict action
|
||||
_, reward, done, _,_ = env.step(action)
|
||||
last_screen = current_screen
|
||||
current_screen = get_screen(env)
|
||||
next_state = current_screen - last_screen
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
print(f"Episode: {i_ep+1}/{cfg['test_eps']},Reward: {ep_reward:.2f}")
|
||||
print("Finish testing!")
|
||||
env.close()
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
@@ -1,39 +0,0 @@
|
||||
食用本篇之前,需要有DQN算法的基础,参考[DQN算法实战](../DQN)。
|
||||
|
||||
## 原理简介
|
||||
|
||||
Double-DQN是2016年提出的算法,灵感源自2010年的Double-Qlearning,可参考论文[Deep Reinforcement Learning with Double Q-learning](https://arxiv.org/abs/1509.06461)。
|
||||
跟Nature DQN一样,Double-DQN也用了两个网络,一个当前网络(对应用$Q$表示),一个目标网络(对应一般用$Q'$表示,为方便区分,以下用$Q_{tar}$代替)。我们先回忆一下,对于非终止状态,目标$Q_{tar}$值计算如下
|
||||

|
||||
|
||||
而在Double-DQN中,不再是直接从目标$Q_{tar}$网络中选择各个动作中的最大$Q_{tar}$值,而是先从当前$Q$网络选择$Q$值最大对应的动作,然后代入到目标网络中计算对应的值:
|
||||

|
||||
Double-DQN的好处是Nature DQN中使用max虽然可以快速让Q值向可能的优化目标靠拢,但是很容易过犹不及,导致过度估计(Over Estimation),所谓过度估计就是最终我们得到的算法模型有很大的偏差(bias)。为了解决这个问题, DDQN通过解耦目标Q值动作的选择和目标Q值的计算这两步,来达到消除过度估计的问题,感兴趣可以阅读原论文。
|
||||
|
||||
伪代码如下:
|
||||

|
||||
当然也可以两个网络可以同时为当前网络和目标网络,如下:
|
||||

|
||||
或者这样更好理解如何同时为当前网络和目标网络:
|
||||

|
||||
|
||||
## 代码实战
|
||||
完整程序见[github](https://github.com/JohnJim0816/reinforcement-learning-tutorials/tree/master/DoubleDQN)。结合上面的原理,其实Double DQN改进来很简单,基本只需要在```update```中修改几行代码,如下:
|
||||
```python
|
||||
'''以下是Nature DQN的q_target计算方式
|
||||
next_q_state_value = self.target_net(
|
||||
next_state_batch).max(1)[0].detach() # # 计算所有next states的Q'(s_{t+1})的最大值,Q'为目标网络的q函数,比如tensor([ 0.0060, -0.0171,...,])
|
||||
#计算 q_target
|
||||
#对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward
|
||||
q_target = reward_batch + self.gamma * next_q_state_value * (1-done_batch[0])
|
||||
'''
|
||||
'''以下是Double DQNq_target计算方式,与NatureDQN稍有不同'''
|
||||
next_target_values = self.target_net(
|
||||
next_state_batch)
|
||||
#选出Q(s_t‘, a)对应的action,代入到next_target_values获得target net对应的next_q_value,即Q’(s_t|a=argmax Q(s_t‘, a))
|
||||
next_target_q_value = next_target_values.gather(1, torch.max(next_q_values, 1)[1].unsqueeze(1)).squeeze(1)
|
||||
q_target = reward_batch + self.gamma * next_target_q_value * (1-done_batch[0])
|
||||
```
|
||||
reward变化结果如下:
|
||||

|
||||
其中下边蓝色和红色分别表示Double DQN和Nature DQN在训练中的reward变化图,而上面蓝色和绿色则表示Double DQN和Nature DQN在测试中的reward变化图。
|
||||
|
Before Width: | Height: | Size: 17 KiB |
|
Before Width: | Height: | Size: 24 KiB |
|
Before Width: | Height: | Size: 105 KiB |
|
Before Width: | Height: | Size: 74 KiB |
|
Before Width: | Height: | Size: 185 KiB |
|
Before Width: | Height: | Size: 75 KiB |
@@ -1,106 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:50:49
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-08-29 23:34:20
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
'''off-policy
|
||||
'''
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.nn.functional as F
|
||||
import random
|
||||
import math
|
||||
import numpy as np
|
||||
class DoubleDQN:
|
||||
def __init__(self,models, memories, cfg):
|
||||
self.n_actions = cfg['n_actions']
|
||||
self.device = torch.device(cfg['device'])
|
||||
self.gamma = cfg['gamma']
|
||||
## e-greedy parameters
|
||||
self.sample_count = 0 # sample count for epsilon decay
|
||||
self.epsilon_start = cfg['epsilon_start']
|
||||
self.epsilon_end = cfg['epsilon_end']
|
||||
self.epsilon_decay = cfg['epsilon_decay']
|
||||
self.batch_size = cfg['batch_size']
|
||||
self.policy_net = models['Qnet'].to(self.device)
|
||||
self.target_net = models['Qnet'].to(self.device)
|
||||
# target_net copy from policy_net
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
# self.target_net.eval() # donnot use BatchNormalization or Dropout
|
||||
# the difference between parameters() and state_dict() is that parameters() require_grad=True
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg['lr'])
|
||||
self.memory = memories['Memory']
|
||||
self.update_flag = False
|
||||
|
||||
def sample_action(self, state):
|
||||
''' sample action
|
||||
'''
|
||||
self.sample_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
if random.random() > self.epsilon:
|
||||
with torch.no_grad():
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
|
||||
q_value = self.policy_net(state)
|
||||
action = q_value.max(1)[1].item()
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
def predict_action(self, state):
|
||||
''' predict action
|
||||
'''
|
||||
with torch.no_grad():
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
|
||||
q_value = self.policy_net(state)
|
||||
action = q_value.max(1)[1].item()
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # when transitions in memory donot meet a batch, not update
|
||||
return
|
||||
else:
|
||||
if not self.update_flag:
|
||||
print("Begin to update!")
|
||||
self.update_flag = True
|
||||
# sample a batch of transitions from replay buffer
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size)
|
||||
# convert to tensor
|
||||
state_batch = torch.tensor(np.array(state_batch), device=self.device, dtype=torch.float)
|
||||
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) # shape(batchsize,1)
|
||||
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float).unsqueeze(1) # shape(batchsize,1)
|
||||
next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device, dtype=torch.float)
|
||||
done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1) # shape(batchsize,1)
|
||||
# compute current Q(s_t|a=a_t)
|
||||
q_value_batch = self.policy_net(state_batch).gather(dim=1, index=action_batch) # shape(batchsize,1),requires_grad=True
|
||||
next_q_value_batch = self.policy_net(next_state_batch)
|
||||
'''the following is the way of computing Double DQN expected_q_value,a bit different from Nature DQN'''
|
||||
next_target_value_batch = self.target_net(next_state_batch)
|
||||
# choose action a from Q(s_t‘, a), next_target_values obtain next_q_value,which is Q’(s_t|a=argmax Q(s_t‘, a))
|
||||
next_target_q_value_batch = next_target_value_batch.gather(1, torch.max(next_q_value_batch, 1)[1].unsqueeze(1)) # shape(batchsize,1)
|
||||
expected_q_value_batch = reward_batch + self.gamma * next_target_q_value_batch * (1-done_batch)
|
||||
loss = nn.MSELoss()(q_value_batch , expected_q_value_batch)
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
# clip to avoid gradient explosion
|
||||
for param in self.policy_net.parameters():
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step()
|
||||
|
||||
def save_model(self,path):
|
||||
from pathlib import Path
|
||||
# create path
|
||||
Path(path).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.target_net.state_dict(), path+'checkpoint.pth')
|
||||
|
||||
def load_model(self,path):
|
||||
self.target_net.load_state_dict(torch.load(path+'checkpoint.pth'))
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
param.data.copy_(target_param.data)
|
||||
@@ -1,129 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-11-07 18:10:37
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-08-29 23:33:31
|
||||
Discription:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
|
||||
import gym
|
||||
import datetime
|
||||
import argparse
|
||||
|
||||
from common.utils import all_seed
|
||||
from common.models import MLP
|
||||
from common.memories import ReplayBufferQue
|
||||
from DoubleDQN.double_dqn import DoubleDQN
|
||||
from common.launcher import Launcher
|
||||
from envs.register import register_env
|
||||
class Main(Launcher):
|
||||
def get_args(self):
|
||||
''' hyperparameters
|
||||
'''
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='DoubleDQN',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
||||
parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor")
|
||||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon")
|
||||
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
|
||||
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=64,type=int)
|
||||
parser.add_argument('--target_update',default=4,type=int)
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=1,type=int,help="seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
|
||||
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
|
||||
}
|
||||
args = {**vars(args),**default_args} # type(dict)
|
||||
return args
|
||||
def env_agent_config(self,cfg):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg['env_name'])
|
||||
env = gym.make(cfg['env_name'])
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
models = {'Qnet':MLP(n_states,n_actions,hidden_dim=cfg['hidden_dim'])}
|
||||
memories = {'Memory':ReplayBufferQue(cfg['memory_capacity'])}
|
||||
agent = DoubleDQN(models,memories,cfg)
|
||||
return env,agent
|
||||
|
||||
def train(self,cfg,env,agent):
|
||||
print("Start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = []
|
||||
for i_ep in range(cfg["train_eps"]):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
action = agent.sample_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push((state, action, reward, next_state, done))
|
||||
state = next_state
|
||||
agent.update()
|
||||
if done:
|
||||
break
|
||||
if i_ep % cfg['target_update'] == 0:
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
if (i_ep+1)%10 == 0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
|
||||
print("Finish training!")
|
||||
env.close()
|
||||
res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
return res_dic
|
||||
|
||||
def test(self,cfg,env,agent):
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = []
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
action = agent.predict_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
steps.append(ep_step)
|
||||
rewards.append(ep_reward)
|
||||
print(f"Episode: {i_ep+1}/{cfg['test_eps']},Reward: {ep_reward:.2f}")
|
||||
print("Finish testing!")
|
||||
env.close()
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
@@ -1 +0,0 @@
|
||||
{"algo_name": "DoubleDQN", "env_name": "CartPole-v0", "train_eps": 200, "test_eps": 20, "ep_max_steps": 100000, "gamma": 0.95, "epsilon_start": 0.95, "epsilon_end": 0.01, "epsilon_decay": 500, "lr": 0.0001, "memory_capacity": 100000, "batch_size": 64, "target_update": 4, "hidden_dim": 256, "device": "cpu", "seed": 1, "show_fig": false, "save_fig": true, "result_path": "c:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DoubleDQN/outputs/CartPole-v0/20220829-233435/results/", "model_path": "c:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DoubleDQN/outputs/CartPole-v0/20220829-233435/models/", "n_states": 4, "n_actions": 2}
|
||||
|
Before Width: | Height: | Size: 53 KiB |
@@ -1,21 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,145.0,0
|
||||
1,166.0,0
|
||||
2,171.0,0
|
||||
3,200.0,0
|
||||
4,139.0,0
|
||||
5,200.0,0
|
||||
6,200.0,0
|
||||
7,141.0,0
|
||||
8,200.0,0
|
||||
9,187.0,0
|
||||
10,166.0,0
|
||||
11,172.0,0
|
||||
12,121.0,0
|
||||
13,200.0,0
|
||||
14,200.0,0
|
||||
15,149.0,0
|
||||
16,128.0,0
|
||||
17,200.0,0
|
||||
18,178.0,0
|
||||
19,185.0,0
|
||||
|
|
Before Width: | Height: | Size: 65 KiB |
@@ -1,201 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,19.0,0
|
||||
1,16.0,0
|
||||
2,17.0,0
|
||||
3,11.0,0
|
||||
4,10.0,0
|
||||
5,27.0,0
|
||||
6,16.0,0
|
||||
7,9.0,0
|
||||
8,20.0,0
|
||||
9,21.0,0
|
||||
10,15.0,0
|
||||
11,10.0,0
|
||||
12,14.0,0
|
||||
13,37.0,0
|
||||
14,12.0,0
|
||||
15,10.0,0
|
||||
16,27.0,0
|
||||
17,33.0,0
|
||||
18,19.0,0
|
||||
19,13.0,0
|
||||
20,26.0,0
|
||||
21,15.0,0
|
||||
22,29.0,0
|
||||
23,11.0,0
|
||||
24,20.0,0
|
||||
25,23.0,0
|
||||
26,23.0,0
|
||||
27,26.0,0
|
||||
28,17.0,0
|
||||
29,33.0,0
|
||||
30,16.0,0
|
||||
31,48.0,0
|
||||
32,48.0,0
|
||||
33,69.0,0
|
||||
34,58.0,0
|
||||
35,24.0,0
|
||||
36,18.0,0
|
||||
37,28.0,0
|
||||
38,12.0,0
|
||||
39,12.0,0
|
||||
40,18.0,0
|
||||
41,12.0,0
|
||||
42,13.0,0
|
||||
43,21.0,0
|
||||
44,30.0,0
|
||||
45,32.0,0
|
||||
46,22.0,0
|
||||
47,18.0,0
|
||||
48,12.0,0
|
||||
49,12.0,0
|
||||
50,20.0,0
|
||||
51,32.0,0
|
||||
52,15.0,0
|
||||
53,100.0,0
|
||||
54,26.0,0
|
||||
55,25.0,0
|
||||
56,18.0,0
|
||||
57,15.0,0
|
||||
58,35.0,0
|
||||
59,12.0,0
|
||||
60,65.0,0
|
||||
61,27.0,0
|
||||
62,29.0,0
|
||||
63,22.0,0
|
||||
64,83.0,0
|
||||
65,24.0,0
|
||||
66,28.0,0
|
||||
67,15.0,0
|
||||
68,43.0,0
|
||||
69,13.0,0
|
||||
70,22.0,0
|
||||
71,46.0,0
|
||||
72,14.0,0
|
||||
73,32.0,0
|
||||
74,44.0,0
|
||||
75,53.0,0
|
||||
76,31.0,0
|
||||
77,51.0,0
|
||||
78,61.0,0
|
||||
79,30.0,0
|
||||
80,36.0,0
|
||||
81,30.0,0
|
||||
82,48.0,0
|
||||
83,26.0,0
|
||||
84,27.0,0
|
||||
85,43.0,0
|
||||
86,20.0,0
|
||||
87,87.0,0
|
||||
88,71.0,0
|
||||
89,43.0,0
|
||||
90,57.0,0
|
||||
91,40.0,0
|
||||
92,37.0,0
|
||||
93,43.0,0
|
||||
94,31.0,0
|
||||
95,45.0,0
|
||||
96,47.0,0
|
||||
97,52.0,0
|
||||
98,48.0,0
|
||||
99,98.0,0
|
||||
100,49.0,0
|
||||
101,98.0,0
|
||||
102,68.0,0
|
||||
103,70.0,0
|
||||
104,74.0,0
|
||||
105,73.0,0
|
||||
106,127.0,0
|
||||
107,92.0,0
|
||||
108,70.0,0
|
||||
109,97.0,0
|
||||
110,66.0,0
|
||||
111,112.0,0
|
||||
112,138.0,0
|
||||
113,81.0,0
|
||||
114,74.0,0
|
||||
115,153.0,0
|
||||
116,113.0,0
|
||||
117,88.0,0
|
||||
118,138.0,0
|
||||
119,200.0,0
|
||||
120,84.0,0
|
||||
121,123.0,0
|
||||
122,158.0,0
|
||||
123,171.0,0
|
||||
124,137.0,0
|
||||
125,143.0,0
|
||||
126,170.0,0
|
||||
127,127.0,0
|
||||
128,118.0,0
|
||||
129,200.0,0
|
||||
130,189.0,0
|
||||
131,149.0,0
|
||||
132,137.0,0
|
||||
133,115.0,0
|
||||
134,153.0,0
|
||||
135,136.0,0
|
||||
136,140.0,0
|
||||
137,169.0,0
|
||||
138,187.0,0
|
||||
139,200.0,0
|
||||
140,196.0,0
|
||||
141,200.0,0
|
||||
142,200.0,0
|
||||
143,137.0,0
|
||||
144,200.0,0
|
||||
145,185.0,0
|
||||
146,200.0,0
|
||||
147,164.0,0
|
||||
148,200.0,0
|
||||
149,143.0,0
|
||||
150,143.0,0
|
||||
151,112.0,0
|
||||
152,192.0,0
|
||||
153,200.0,0
|
||||
154,144.0,0
|
||||
155,188.0,0
|
||||
156,200.0,0
|
||||
157,133.0,0
|
||||
158,200.0,0
|
||||
159,143.0,0
|
||||
160,158.0,0
|
||||
161,161.0,0
|
||||
162,169.0,0
|
||||
163,176.0,0
|
||||
164,200.0,0
|
||||
165,149.0,0
|
||||
166,156.0,0
|
||||
167,200.0,0
|
||||
168,200.0,0
|
||||
169,200.0,0
|
||||
170,134.0,0
|
||||
171,171.0,0
|
||||
172,200.0,0
|
||||
173,200.0,0
|
||||
174,200.0,0
|
||||
175,194.0,0
|
||||
176,200.0,0
|
||||
177,138.0,0
|
||||
178,159.0,0
|
||||
179,187.0,0
|
||||
180,200.0,0
|
||||
181,192.0,0
|
||||
182,200.0,0
|
||||
183,200.0,0
|
||||
184,200.0,0
|
||||
185,173.0,0
|
||||
186,200.0,0
|
||||
187,178.0,0
|
||||
188,176.0,0
|
||||
189,196.0,0
|
||||
190,200.0,0
|
||||
191,195.0,0
|
||||
192,158.0,0
|
||||
193,156.0,0
|
||||
194,200.0,0
|
||||
195,200.0,0
|
||||
196,200.0,0
|
||||
197,200.0,0
|
||||
198,193.0,0
|
||||
199,200.0,0
|
||||
|
@@ -1 +0,0 @@
|
||||
{"algo_name": "DoubleDQN", "env_name": "CartPole-v0", "train_eps": 200, "test_eps": 20, "ep_max_steps": 100000, "gamma": 0.95, "epsilon_start": 0.95, "epsilon_end": 0.01, "epsilon_decay": 500, "lr": 0.0001, "memory_capacity": 100000, "batch_size": 64, "target_update": 4, "hidden_dim": 256, "device": "cuda", "seed": 1, "show_fig": false, "save_fig": true, "result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DoubleDQN/outputs/CartPole-v0/20220829-233635/results/", "model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DoubleDQN/outputs/CartPole-v0/20220829-233635/models/", "n_states": 4, "n_actions": 2}
|
||||
|
Before Width: | Height: | Size: 40 KiB |
@@ -1,21 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,200.0,0
|
||||
1,200.0,0
|
||||
2,200.0,0
|
||||
3,200.0,0
|
||||
4,191.0,0
|
||||
5,200.0,0
|
||||
6,200.0,0
|
||||
7,179.0,0
|
||||
8,200.0,0
|
||||
9,200.0,0
|
||||
10,200.0,0
|
||||
11,190.0,0
|
||||
12,147.0,0
|
||||
13,197.0,0
|
||||
14,200.0,0
|
||||
15,200.0,0
|
||||
16,167.0,0
|
||||
17,200.0,0
|
||||
18,200.0,0
|
||||
19,200.0,0
|
||||
|
|
Before Width: | Height: | Size: 65 KiB |
@@ -1,201 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,19.0,0
|
||||
1,16.0,0
|
||||
2,17.0,0
|
||||
3,11.0,0
|
||||
4,10.0,0
|
||||
5,27.0,0
|
||||
6,55.0,0
|
||||
7,17.0,0
|
||||
8,23.0,0
|
||||
9,9.0,0
|
||||
10,17.0,0
|
||||
11,14.0,0
|
||||
12,17.0,0
|
||||
13,12.0,0
|
||||
14,14.0,0
|
||||
15,16.0,0
|
||||
16,27.0,0
|
||||
17,36.0,0
|
||||
18,17.0,0
|
||||
19,17.0,0
|
||||
20,21.0,0
|
||||
21,23.0,0
|
||||
22,13.0,0
|
||||
23,12.0,0
|
||||
24,17.0,0
|
||||
25,26.0,0
|
||||
26,25.0,0
|
||||
27,17.0,0
|
||||
28,10.0,0
|
||||
29,16.0,0
|
||||
30,14.0,0
|
||||
31,19.0,0
|
||||
32,23.0,0
|
||||
33,37.0,0
|
||||
34,29.0,0
|
||||
35,22.0,0
|
||||
36,29.0,0
|
||||
37,15.0,0
|
||||
38,16.0,0
|
||||
39,18.0,0
|
||||
40,23.0,0
|
||||
41,16.0,0
|
||||
42,26.0,0
|
||||
43,13.0,0
|
||||
44,24.0,0
|
||||
45,39.0,0
|
||||
46,23.0,0
|
||||
47,32.0,0
|
||||
48,123.0,0
|
||||
49,18.0,0
|
||||
50,39.0,0
|
||||
51,17.0,0
|
||||
52,28.0,0
|
||||
53,34.0,0
|
||||
54,26.0,0
|
||||
55,61.0,0
|
||||
56,28.0,0
|
||||
57,16.0,0
|
||||
58,45.0,0
|
||||
59,41.0,0
|
||||
60,49.0,0
|
||||
61,18.0,0
|
||||
62,40.0,0
|
||||
63,24.0,0
|
||||
64,37.0,0
|
||||
65,26.0,0
|
||||
66,51.0,0
|
||||
67,17.0,0
|
||||
68,152.0,0
|
||||
69,17.0,0
|
||||
70,29.0,0
|
||||
71,37.0,0
|
||||
72,15.0,0
|
||||
73,55.0,0
|
||||
74,152.0,0
|
||||
75,23.0,0
|
||||
76,45.0,0
|
||||
77,30.0,0
|
||||
78,39.0,0
|
||||
79,20.0,0
|
||||
80,53.0,0
|
||||
81,49.0,0
|
||||
82,71.0,0
|
||||
83,115.0,0
|
||||
84,41.0,0
|
||||
85,52.0,0
|
||||
86,52.0,0
|
||||
87,36.0,0
|
||||
88,84.0,0
|
||||
89,122.0,0
|
||||
90,49.0,0
|
||||
91,200.0,0
|
||||
92,67.0,0
|
||||
93,87.0,0
|
||||
94,183.0,0
|
||||
95,132.0,0
|
||||
96,76.0,0
|
||||
97,200.0,0
|
||||
98,200.0,0
|
||||
99,200.0,0
|
||||
100,200.0,0
|
||||
101,200.0,0
|
||||
102,106.0,0
|
||||
103,192.0,0
|
||||
104,111.0,0
|
||||
105,95.0,0
|
||||
106,200.0,0
|
||||
107,200.0,0
|
||||
108,148.0,0
|
||||
109,200.0,0
|
||||
110,97.0,0
|
||||
111,200.0,0
|
||||
112,200.0,0
|
||||
113,105.0,0
|
||||
114,135.0,0
|
||||
115,200.0,0
|
||||
116,144.0,0
|
||||
117,156.0,0
|
||||
118,200.0,0
|
||||
119,200.0,0
|
||||
120,166.0,0
|
||||
121,200.0,0
|
||||
122,200.0,0
|
||||
123,200.0,0
|
||||
124,200.0,0
|
||||
125,200.0,0
|
||||
126,200.0,0
|
||||
127,158.0,0
|
||||
128,139.0,0
|
||||
129,200.0,0
|
||||
130,200.0,0
|
||||
131,200.0,0
|
||||
132,200.0,0
|
||||
133,122.0,0
|
||||
134,200.0,0
|
||||
135,188.0,0
|
||||
136,200.0,0
|
||||
137,183.0,0
|
||||
138,200.0,0
|
||||
139,200.0,0
|
||||
140,200.0,0
|
||||
141,200.0,0
|
||||
142,200.0,0
|
||||
143,158.0,0
|
||||
144,200.0,0
|
||||
145,200.0,0
|
||||
146,200.0,0
|
||||
147,191.0,0
|
||||
148,200.0,0
|
||||
149,194.0,0
|
||||
150,178.0,0
|
||||
151,200.0,0
|
||||
152,200.0,0
|
||||
153,200.0,0
|
||||
154,162.0,0
|
||||
155,200.0,0
|
||||
156,200.0,0
|
||||
157,128.0,0
|
||||
158,200.0,0
|
||||
159,184.0,0
|
||||
160,194.0,0
|
||||
161,200.0,0
|
||||
162,200.0,0
|
||||
163,200.0,0
|
||||
164,200.0,0
|
||||
165,160.0,0
|
||||
166,163.0,0
|
||||
167,200.0,0
|
||||
168,200.0,0
|
||||
169,200.0,0
|
||||
170,141.0,0
|
||||
171,200.0,0
|
||||
172,200.0,0
|
||||
173,200.0,0
|
||||
174,200.0,0
|
||||
175,200.0,0
|
||||
176,200.0,0
|
||||
177,157.0,0
|
||||
178,164.0,0
|
||||
179,200.0,0
|
||||
180,200.0,0
|
||||
181,200.0,0
|
||||
182,200.0,0
|
||||
183,200.0,0
|
||||
184,200.0,0
|
||||
185,193.0,0
|
||||
186,182.0,0
|
||||
187,200.0,0
|
||||
188,200.0,0
|
||||
189,200.0,0
|
||||
190,200.0,0
|
||||
191,200.0,0
|
||||
192,174.0,0
|
||||
193,178.0,0
|
||||
194,200.0,0
|
||||
195,200.0,0
|
||||
196,200.0,0
|
||||
197,200.0,0
|
||||
198,200.0,0
|
||||
199,200.0,0
|
||||
|