Files
easy-rl/projects/codes/A2C/a2c_2.py
2022-11-06 12:15:36 +08:00

65 lines
2.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2022-09-19 14:48:16
LastEditor: JiangJi
LastEditTime: 2022-10-30 01:21:50
Discription: #TODO待更新模版
'''
import torch
import numpy as np
class A2C_2:
def __init__(self,models,memories,cfg):
self.n_actions = cfg.n_actions
self.gamma = cfg.gamma
self.device = torch.device(cfg.device)
self.memory = memories['ACMemory']
self.ac_net = models['ActorCritic'].to(self.device)
self.ac_optimizer = torch.optim.Adam(self.ac_net.parameters(), lr = cfg.lr)
def sample_action(self,state):
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
value, dist = self.ac_net(state) # note that 'dist' need require_grad=True
value = value.detach().numpy().squeeze(0)[0]
action = np.random.choice(self.n_actions, p=dist.detach().numpy().squeeze(0)) # shape(p=(n_actions,1)
return action,value,dist
def predict_action(self,state):
''' predict can be all wrapped with no_grad(), then donot need detach(), or you can just copy contents of 'sample_action'
'''
with torch.no_grad():
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
value, dist = self.ac_net(state)
value = value.numpy().squeeze(0)[0] # shape(value) = (1,)
action = np.random.choice(self.n_actions, p=dist.numpy().squeeze(0)) # shape(p=(n_actions,1)
return action,value,dist
def update(self,next_state,entropy):
value_pool,log_prob_pool,reward_pool = self.memory.sample()
next_state = torch.tensor(next_state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
next_value,_ = self.ac_net(next_state)
returns = np.zeros_like(reward_pool)
for t in reversed(range(len(reward_pool))):
next_value = reward_pool[t] + self.gamma * next_value # G(s_{t},a{t}) = r_{t+1} + gamma * V(s_{t+1})
returns[t] = next_value
returns = torch.tensor(returns, device=self.device)
value_pool = torch.tensor(value_pool, device=self.device)
advantages = returns - value_pool
log_prob_pool = torch.stack(log_prob_pool)
actor_loss = (-log_prob_pool * advantages).mean()
critic_loss = 0.5 * advantages.pow(2).mean()
ac_loss = actor_loss + critic_loss + 0.001 * entropy
self.ac_optimizer.zero_grad()
ac_loss.backward()
self.ac_optimizer.step()
self.memory.clear()
def save_model(self, path):
from pathlib import Path
# create path
Path(path).mkdir(parents=True, exist_ok=True)
torch.save(self.ac_net.state_dict(), f"{path}/a2c_checkpoint.pt")
def load_model(self, path):
self.ac_net.load_state_dict(torch.load(f"{path}/a2c_checkpoint.pt"))