138 lines
5.5 KiB
Python
138 lines
5.5 KiB
Python
import sys,os
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||
parent_path = os.path.dirname(curr_path) # parent path
|
||
sys.path.append(parent_path) # add to system path
|
||
|
||
import gym
|
||
import numpy as np
|
||
import torch
|
||
import torch.optim as optim
|
||
import datetime
|
||
import argparse
|
||
from common.multiprocessing_env import SubprocVecEnv
|
||
from a3c import ActorCritic
|
||
from common.utils import save_results, make_dir
|
||
from common.utils import plot_rewards, save_args
|
||
|
||
|
||
def get_args():
|
||
""" Hyperparameters
|
||
"""
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
|
||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||
parser.add_argument('--algo_name',default='A2C',type=str,help="name of algorithm")
|
||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||
parser.add_argument('--n_envs',default=8,type=int,help="numbers of environments")
|
||
|
||
parser.add_argument('--max_steps',default=20000,type=int,help="episodes of training")
|
||
parser.add_argument('--n_steps',default=5,type=int,help="episodes of testing")
|
||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||
parser.add_argument('--lr',default=1e-3,type=float,help="learning rate")
|
||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/results/' )
|
||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/models/' ) # path to save models
|
||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||
args = parser.parse_args()
|
||
return args
|
||
|
||
def make_envs(env_name):
|
||
def _thunk():
|
||
env = gym.make(env_name)
|
||
env.seed(2)
|
||
return env
|
||
return _thunk
|
||
def test_env(env,model,vis=False):
|
||
state = env.reset()
|
||
if vis: env.render()
|
||
done = False
|
||
total_reward = 0
|
||
while not done:
|
||
state = torch.FloatTensor(state).unsqueeze(0).to(cfg.device)
|
||
dist, _ = model(state)
|
||
next_state, reward, done, _ = env.step(dist.sample().cpu().numpy()[0])
|
||
state = next_state
|
||
if vis: env.render()
|
||
total_reward += reward
|
||
return total_reward
|
||
|
||
def compute_returns(next_value, rewards, masks, gamma=0.99):
|
||
R = next_value
|
||
returns = []
|
||
for step in reversed(range(len(rewards))):
|
||
R = rewards[step] + gamma * R * masks[step]
|
||
returns.insert(0, R)
|
||
return returns
|
||
|
||
|
||
def train(cfg,envs):
|
||
print('Start training!')
|
||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||
env = gym.make(cfg.env_name) # a single env
|
||
env.seed(10)
|
||
n_states = envs.observation_space.shape[0]
|
||
n_actions = envs.action_space.n
|
||
model = ActorCritic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||
optimizer = optim.Adam(model.parameters())
|
||
step_idx = 0
|
||
test_rewards = []
|
||
test_ma_rewards = []
|
||
state = envs.reset()
|
||
while step_idx < cfg.max_steps:
|
||
log_probs = []
|
||
values = []
|
||
rewards = []
|
||
masks = []
|
||
entropy = 0
|
||
# rollout trajectory
|
||
for _ in range(cfg.n_steps):
|
||
state = torch.FloatTensor(state).to(cfg.device)
|
||
dist, value = model(state)
|
||
action = dist.sample()
|
||
next_state, reward, done, _ = envs.step(action.cpu().numpy())
|
||
log_prob = dist.log_prob(action)
|
||
entropy += dist.entropy().mean()
|
||
log_probs.append(log_prob)
|
||
values.append(value)
|
||
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(cfg.device))
|
||
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(cfg.device))
|
||
state = next_state
|
||
step_idx += 1
|
||
if step_idx % 100 == 0:
|
||
test_reward = np.mean([test_env(env,model) for _ in range(10)])
|
||
print(f"step_idx:{step_idx}, test_reward:{test_reward}")
|
||
test_rewards.append(test_reward)
|
||
if test_ma_rewards:
|
||
test_ma_rewards.append(0.9*test_ma_rewards[-1]+0.1*test_reward)
|
||
else:
|
||
test_ma_rewards.append(test_reward)
|
||
# plot(step_idx, test_rewards)
|
||
next_state = torch.FloatTensor(next_state).to(cfg.device)
|
||
_, next_value = model(next_state)
|
||
returns = compute_returns(next_value, rewards, masks)
|
||
log_probs = torch.cat(log_probs)
|
||
returns = torch.cat(returns).detach()
|
||
values = torch.cat(values)
|
||
advantage = returns - values
|
||
actor_loss = -(log_probs * advantage.detach()).mean()
|
||
critic_loss = advantage.pow(2).mean()
|
||
loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy
|
||
optimizer.zero_grad()
|
||
loss.backward()
|
||
optimizer.step()
|
||
print('Finish training!')
|
||
return {'rewards':test_rewards,'ma_rewards':test_ma_rewards}
|
||
if __name__ == "__main__":
|
||
cfg = get_args()
|
||
envs = [make_envs(cfg.env_name) for i in range(cfg.n_envs)]
|
||
envs = SubprocVecEnv(envs)
|
||
# training
|
||
res_dic = train(cfg,envs)
|
||
make_dir(cfg.result_path,cfg.model_path)
|
||
save_args(cfg)
|
||
save_results(res_dic, tag='train',
|
||
path=cfg.result_path)
|
||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果
|