Files
easy-rl/projects/codes/DQN/task0.py
2022-11-06 12:15:36 +08:00

139 lines
6.3 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2022-10-12 11:09:54
LastEditor: JiangJi
LastEditTime: 2022-10-31 00:13:31
Discription: CartPole-v1,Acrobot-v1
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
parent_path = os.path.dirname(curr_path) # parent path
sys.path.append(parent_path) # add to system path
import gym
from common.utils import all_seed,merge_class_attrs
from common.models import MLP
from common.memories import ReplayBuffer
from common.launcher import Launcher
from envs.register import register_env
from dqn import DQN
from config.config import GeneralConfigDQN,AlgoConfigDQN
class Main(Launcher):
def __init__(self) -> None:
super().__init__()
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigDQN())
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigDQN())
def env_agent_config(self,cfg,logger):
''' create env and agent
'''
register_env(cfg.env_name)
env = gym.make(cfg.env_name,new_step_api=True) # create env
if cfg.seed !=0: # set random seed
all_seed(env,seed=cfg.seed)
try: # state dimension
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
except AttributeError:
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
n_actions = env.action_space.n # action dimension
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
# update to cfg paramters
setattr(cfg, 'n_states', n_states)
setattr(cfg, 'n_actions', n_actions)
# cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
model = MLP(n_states,n_actions,hidden_dim=cfg.hidden_dim)
memory = ReplayBuffer(cfg.buffer_size) # replay buffer
agent = DQN(model,memory,cfg) # create agent
return env, agent
def train_one_episode(self, env, agent, cfg):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
for _ in range(cfg.max_steps):
ep_step += 1
action = agent.sample_action(state) # sample action
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
agent.memory.push(state, action, reward,
next_state, terminated) # save transitions
agent.update() # update agent
state = next_state # update next state for env
ep_reward += reward #
if terminated:
break
return agent,ep_reward,ep_step
def test_one_episode(self, env, agent, cfg):
ep_reward = 0 # reward per episode
ep_step = 0
state = env.reset() # reset and obtain initial state
for _ in range(cfg.max_steps):
ep_step += 1
action = agent.predict_action(state) # sample action
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
state = next_state # update next state for env
ep_reward += reward #
if terminated:
break
return agent,ep_reward,ep_step
# def train(self,env, agent,cfg,logger):
# ''' 训练
# '''
# logger.info("Start training!")
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
# rewards = [] # record rewards for all episodes
# steps = [] # record steps for all episodes
# for i_ep in range(cfg.train_eps):
# ep_reward = 0 # reward per episode
# ep_step = 0
# state = env.reset() # reset and obtain initial state
# for _ in range(cfg.max_steps):
# ep_step += 1
# action = agent.sample_action(state) # sample action
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions under new_step_api of OpenAI Gym
# agent.memory.push(state, action, reward,
# next_state, terminated) # save transitions
# state = next_state # update next state for env
# agent.update() # update agent
# ep_reward += reward #
# if terminated:
# break
# if (i_ep + 1) % cfg.target_update == 0: # target net update, target_update means "C" in pseucodes
# agent.target_net.load_state_dict(agent.policy_net.state_dict())
# steps.append(ep_step)
# rewards.append(ep_reward)
# logger.info(f'Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}')
# logger.info("Finish training!")
# env.close()
# res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
# return res_dic
# def test(self,cfg, env, agent,logger):
# logger.info("Start testing!")
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
# rewards = [] # record rewards for all episodes
# steps = [] # record steps for all episodes
# for i_ep in range(cfg.test_eps):
# ep_reward = 0 # reward per episode
# ep_step = 0
# state = env.reset() # reset and obtain initial state
# for _ in range(cfg.max_steps):
# ep_step+=1
# action = agent.predict_action(state) # predict action
# next_state, reward, terminated, _, _ = env.step(action)
# state = next_state
# ep_reward += reward
# if terminated:
# break
# steps.append(ep_step)
# rewards.append(ep_reward)
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}")
# logger.info("Finish testing!")
# env.close()
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
if __name__ == "__main__":
main = Main()
main.run()