131 lines
6.4 KiB
Python
131 lines
6.4 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
@Author: John
|
|
@Email: johnjim0816@gmail.com
|
|
@Date: 2020-06-12 00:50:49
|
|
@LastEditor: John
|
|
LastEditTime: 2022-10-31 00:07:19
|
|
@Discription:
|
|
@Environment: python 3.7.7
|
|
'''
|
|
'''off-policy
|
|
'''
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
import random
|
|
import math
|
|
import numpy as np
|
|
|
|
class DQN:
|
|
def __init__(self,model,memory,cfg):
|
|
|
|
self.n_actions = cfg.n_actions
|
|
self.device = torch.device(cfg.device)
|
|
self.gamma = cfg.gamma
|
|
## e-greedy parameters
|
|
self.sample_count = 0 # sample count for epsilon decay
|
|
self.epsilon = cfg.epsilon_start
|
|
self.sample_count = 0
|
|
self.epsilon_start = cfg.epsilon_start
|
|
self.epsilon_end = cfg.epsilon_end
|
|
self.epsilon_decay = cfg.epsilon_decay
|
|
self.batch_size = cfg.batch_size
|
|
self.target_update = cfg.target_update
|
|
self.policy_net = model.to(self.device)
|
|
self.target_net = model.to(self.device)
|
|
## copy parameters from policy net to target net
|
|
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()):
|
|
target_param.data.copy_(param.data)
|
|
# self.target_net.load_state_dict(self.policy_net.state_dict()) # or use this to copy parameters
|
|
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
|
self.memory = memory
|
|
self.update_flag = False
|
|
|
|
def sample_action(self, state):
|
|
''' sample action with e-greedy policy
|
|
'''
|
|
self.sample_count += 1
|
|
# epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
|
|
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
|
math.exp(-1. * self.sample_count / self.epsilon_decay)
|
|
if random.random() > self.epsilon:
|
|
with torch.no_grad():
|
|
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
|
q_values = self.policy_net(state)
|
|
action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
|
|
else:
|
|
action = random.randrange(self.n_actions)
|
|
return action
|
|
# @torch.no_grad()
|
|
# def sample_action(self, state):
|
|
# ''' sample action with e-greedy policy
|
|
# '''
|
|
# self.sample_count += 1
|
|
# # epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
|
|
# self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
|
# math.exp(-1. * self.sample_count / self.epsilon_decay)
|
|
# if random.random() > self.epsilon:
|
|
# state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
|
# q_values = self.policy_net(state)
|
|
# action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
|
|
# else:
|
|
# action = random.randrange(self.n_actions)
|
|
# return action
|
|
def predict_action(self,state):
|
|
''' predict action
|
|
'''
|
|
with torch.no_grad():
|
|
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
|
q_values = self.policy_net(state)
|
|
action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
|
|
return action
|
|
def update(self):
|
|
if len(self.memory) < self.batch_size: # when transitions in memory donot meet a batch, not update
|
|
return
|
|
else:
|
|
if not self.update_flag:
|
|
print("Begin to update!")
|
|
self.update_flag = True
|
|
# sample a batch of transitions from replay buffer
|
|
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
|
|
self.batch_size)
|
|
state_batch = torch.tensor(np.array(state_batch), device=self.device, dtype=torch.float) # shape(batchsize,n_states)
|
|
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) # shape(batchsize,1)
|
|
reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float).unsqueeze(1) # shape(batchsize,1)
|
|
next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device, dtype=torch.float) # shape(batchsize,n_states)
|
|
done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1) # shape(batchsize,1)
|
|
# print(state_batch.shape,action_batch.shape,reward_batch.shape,next_state_batch.shape,done_batch.shape)
|
|
# compute current Q(s_t,a), it is 'y_j' in pseucodes
|
|
q_value_batch = self.policy_net(state_batch).gather(dim=1, index=action_batch) # shape(batchsize,1),requires_grad=True
|
|
# print(q_values.requires_grad)
|
|
# compute max(Q(s_t+1,A_t+1)) respects to actions A, next_max_q_value comes from another net and is just regarded as constant for q update formula below, thus should detach to requires_grad=False
|
|
next_max_q_value_batch = self.target_net(next_state_batch).max(1)[0].detach().unsqueeze(1)
|
|
# print(q_values.shape,next_q_values.shape)
|
|
# compute expected q value, for terminal state, done_batch[0]=1, and expected_q_value=rewardcorrespondingly
|
|
expected_q_value_batch = reward_batch + self.gamma * next_max_q_value_batch* (1-done_batch)
|
|
# print(expected_q_value_batch.shape,expected_q_value_batch.requires_grad)
|
|
loss = nn.MSELoss()(q_value_batch, expected_q_value_batch) # shape same to
|
|
# backpropagation
|
|
self.optimizer.zero_grad()
|
|
loss.backward()
|
|
# clip to avoid gradient explosion
|
|
for param in self.policy_net.parameters():
|
|
param.grad.data.clamp_(-1, 1)
|
|
self.optimizer.step()
|
|
if self.sample_count % self.target_update == 0: # target net update, target_update means "C" in pseucodes
|
|
self.target_net.load_state_dict(self.policy_net.state_dict())
|
|
|
|
def save_model(self, fpath):
|
|
from pathlib import Path
|
|
# create path
|
|
Path(fpath).mkdir(parents=True, exist_ok=True)
|
|
torch.save(self.target_net.state_dict(), f"{fpath}/checkpoint.pt")
|
|
|
|
def load_model(self, fpath):
|
|
self.target_net.load_state_dict(torch.load(f"{fpath}/checkpoint.pt"))
|
|
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
|
param.data.copy_(target_param.data)
|