222 lines
10 KiB
Python
222 lines
10 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: JiangJi
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2022-10-24 08:21:31
|
||
LastEditor: JiangJi
|
||
LastEditTime: 2022-10-26 09:50:49
|
||
Discription: Not finished
|
||
'''
|
||
import sys,os
|
||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||
parent_path = os.path.dirname(curr_path) # parent path
|
||
sys.path.append(parent_path) # add path to system path
|
||
|
||
import gym
|
||
import torch
|
||
import datetime
|
||
import numpy as np
|
||
import argparse
|
||
from common.utils import all_seed
|
||
from common.models import MLP
|
||
from common.memories import ReplayBuffer
|
||
from common.launcher import Launcher
|
||
from envs.register import register_env
|
||
from dqn import DQN
|
||
import torch.nn as nn
|
||
import torch.nn.functional as F
|
||
import torchvision.transforms as T
|
||
from PIL import Image
|
||
resize = T.Compose([T.ToPILImage(),
|
||
T.Resize(40, interpolation=Image.CUBIC),
|
||
T.ToTensor()])
|
||
|
||
# xvfb-run -s "-screen 0 640x480x24" python main1.py
|
||
def get_cart_location(env,screen_width):
|
||
world_width = env.x_threshold * 2
|
||
scale = screen_width / world_width
|
||
return int(env.state[0] * scale + screen_width / 2.0) # MIDDLE OF CART
|
||
|
||
def get_screen(env):
|
||
# Returned screen requested by gym is 400x600x3, but is sometimes larger
|
||
# such as 800x1200x3. Transpose it into torch order (CHW).
|
||
screen = env.render().transpose((2, 0, 1))
|
||
# Cart is in the lower half, so strip off the top and bottom of the screen
|
||
_, screen_height, screen_width = screen.shape
|
||
screen = screen[:, int(screen_height*0.4):int(screen_height * 0.8)]
|
||
view_width = int(screen_width * 0.6)
|
||
cart_location = get_cart_location(env,screen_width)
|
||
if cart_location < view_width // 2:
|
||
slice_range = slice(view_width)
|
||
elif cart_location > (screen_width - view_width // 2):
|
||
slice_range = slice(-view_width, None)
|
||
else:
|
||
slice_range = slice(cart_location - view_width // 2,
|
||
cart_location + view_width // 2)
|
||
# Strip off the edges, so that we have a square image centered on a cart
|
||
screen = screen[:, :, slice_range]
|
||
# Convert to float, rescale, convert to torch tensor
|
||
# (this doesn't require a copy)
|
||
screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
|
||
screen = torch.from_numpy(screen)
|
||
# Resize, and add a batch dimension (BCHW)
|
||
return resize(screen)
|
||
|
||
|
||
class CNN(nn.Module):
|
||
|
||
def __init__(self, h, w, outputs):
|
||
super(CNN, self).__init__()
|
||
self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2)
|
||
self.bn1 = nn.BatchNorm2d(16)
|
||
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2)
|
||
self.bn2 = nn.BatchNorm2d(32)
|
||
self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2)
|
||
self.bn3 = nn.BatchNorm2d(32)
|
||
|
||
# Number of Linear input connections depends on output of conv2d layers
|
||
# and therefore the input image size, so compute it.
|
||
def conv2d_size_out(size, kernel_size = 5, stride = 2):
|
||
return (size - (kernel_size - 1) - 1) // stride + 1
|
||
convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w)))
|
||
convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h)))
|
||
linear_input_size = convw * convh * 32
|
||
self.head = nn.Linear(linear_input_size, outputs)
|
||
|
||
# Called with either one element to determine next action, or a batch
|
||
# during optimization. Returns tensor([[left0exp,right0exp]...]).
|
||
def forward(self, x):
|
||
x = F.relu(self.bn1(self.conv1(x)))
|
||
x = F.relu(self.bn2(self.conv2(x)))
|
||
x = F.relu(self.bn3(self.conv3(x)))
|
||
return self.head(x.view(x.size(0), -1))
|
||
class Main(Launcher):
|
||
def get_args(self):
|
||
""" hyperparameters
|
||
"""
|
||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||
parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm")
|
||
parser.add_argument('--env_name',default='CartPole-v1',type=str,help="name of environment")
|
||
parser.add_argument('--train_eps',default=800,type=int,help="episodes of training")
|
||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
||
parser.add_argument('--gamma',default=0.999,type=float,help="discounted factor")
|
||
parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon")
|
||
parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon")
|
||
parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon, the higher value, the slower decay")
|
||
parser.add_argument('--lr',default=0.0001,type=float,help="learning rate")
|
||
parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity")
|
||
parser.add_argument('--batch_size',default=128,type=int)
|
||
parser.add_argument('--target_update',default=4,type=int)
|
||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||
parser.add_argument('--device',default='cuda',type=str,help="cpu or cuda")
|
||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||
# please manually change the following args in this script if you want
|
||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/results' )
|
||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||
'/' + curr_time + '/models' )
|
||
args = parser.parse_args()
|
||
args = {**vars(args)} # type(dict)
|
||
return args
|
||
|
||
def env_agent_config(self,cfg):
|
||
''' create env and agent
|
||
'''
|
||
env = gym.make('CartPole-v1', new_step_api=True, render_mode='single_rgb_array').unwrapped
|
||
if cfg['seed'] !=0: # set random seed
|
||
all_seed(env,seed=cfg["seed"])
|
||
try: # state dimension
|
||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||
except AttributeError:
|
||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||
n_actions = env.action_space.n # action dimension
|
||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||
env.reset()
|
||
init_screen = get_screen(env)
|
||
_, screen_height, screen_width = init_screen.shape
|
||
model = CNN(screen_height, screen_width, n_actions)
|
||
memory = ReplayBuffer(cfg["memory_capacity"]) # replay buffer
|
||
agent = DQN(model,memory,cfg) # create agent
|
||
return env, agent
|
||
|
||
def train(self,cfg, env, agent):
|
||
''' 训练
|
||
'''
|
||
print("Start training!")
|
||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||
rewards = [] # record rewards for all episodes
|
||
steps = []
|
||
for i_ep in range(cfg["train_eps"]):
|
||
ep_reward = 0 # reward per episode
|
||
ep_step = 0
|
||
state = env.reset() # reset and obtain initial state
|
||
last_screen = get_screen(env)
|
||
current_screen = get_screen(env)
|
||
state = current_screen - last_screen
|
||
for _ in range(cfg['ep_max_steps']):
|
||
ep_step += 1
|
||
action = agent.sample_action(state) # sample action
|
||
_, reward, done, _,_ = env.step(action) # update env and return transitions
|
||
last_screen = current_screen
|
||
current_screen = get_screen(env)
|
||
next_state = current_screen - last_screen
|
||
agent.memory.push(state.cpu().numpy(), action, reward,
|
||
next_state.cpu().numpy(), done) # save transitions
|
||
state = next_state # update next state for env
|
||
agent.update() # update agent
|
||
ep_reward += reward #
|
||
if done:
|
||
break
|
||
if (i_ep + 1) % cfg["target_update"] == 0: # target net update, target_update means "C" in pseucodes
|
||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||
steps.append(ep_step)
|
||
rewards.append(ep_reward)
|
||
if (i_ep + 1) % 10 == 0:
|
||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, step: {ep_step:d}, Epislon: {agent.epsilon:.3f}')
|
||
print("Finish training!")
|
||
env.close()
|
||
res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||
return res_dic
|
||
|
||
def test(self,cfg, env, agent):
|
||
print("Start testing!")
|
||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||
rewards = [] # record rewards for all episodes
|
||
steps = []
|
||
for i_ep in range(cfg['test_eps']):
|
||
ep_reward = 0 # reward per episode
|
||
ep_step = 0
|
||
state = env.reset() # reset and obtain initial state
|
||
last_screen = get_screen(env)
|
||
current_screen = get_screen(env)
|
||
state = current_screen - last_screen
|
||
for _ in range(cfg['ep_max_steps']):
|
||
ep_step+=1
|
||
action = agent.predict_action(state) # predict action
|
||
_, reward, done, _,_ = env.step(action)
|
||
last_screen = current_screen
|
||
current_screen = get_screen(env)
|
||
next_state = current_screen - last_screen
|
||
state = next_state
|
||
ep_reward += reward
|
||
if done:
|
||
break
|
||
steps.append(ep_step)
|
||
rewards.append(ep_reward)
|
||
print(f"Episode: {i_ep+1}/{cfg['test_eps']},Reward: {ep_reward:.2f}")
|
||
print("Finish testing!")
|
||
env.close()
|
||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main = Main()
|
||
main.run()
|