update projects
|
Before Width: | Height: | Size: 27 KiB |
|
Before Width: | Height: | Size: 69 KiB |
@@ -1,131 +0,0 @@
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import numpy as np
|
||||
import datetime
|
||||
from common.utils import plot_rewards
|
||||
from common.utils import save_results,make_dir
|
||||
from ppo2 import PPO
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
|
||||
class Config:
|
||||
def __init__(self) -> None:
|
||||
################################## 环境超参数 ###################################
|
||||
self.algo_name = "PPO" # 算法名称
|
||||
self.env_name = 'CartPole-v0' # 环境名称
|
||||
self.continuous = False # 环境是否为连续动作
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
self.seed = 10 # 随机种子,置0则不设置随机种子
|
||||
self.train_eps = 200 # 训练的回合数
|
||||
self.test_eps = 20 # 测试的回合数
|
||||
################################################################################
|
||||
|
||||
################################## 算法超参数 ####################################
|
||||
self.batch_size = 5 # mini-batch SGD中的批量大小
|
||||
self.gamma = 0.95 # 强化学习中的折扣因子
|
||||
self.n_epochs = 4
|
||||
self.actor_lr = 0.0003 # actor的学习率
|
||||
self.critic_lr = 0.0003 # critic的学习率
|
||||
self.gae_lambda = 0.95
|
||||
self.policy_clip = 0.2
|
||||
self.hidden_dim = 256
|
||||
self.update_fre = 20 # 策略更新频率
|
||||
################################################################################
|
||||
|
||||
################################# 保存结果相关参数 ################################
|
||||
self.result_path = curr_path+"/outputs/" + self.env_name + \
|
||||
'/'+curr_time+'/results/' # 保存结果的路径
|
||||
self.model_path = curr_path+"/outputs/" + self.env_name + \
|
||||
'/'+curr_time+'/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
################################################################################
|
||||
|
||||
def env_agent_config(cfg):
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
n_states = env.observation_space.shape[0] # 状态维度
|
||||
if cfg.continuous:
|
||||
n_actions = env.action_space.shape[0] # 动作维度
|
||||
else:
|
||||
n_actions = env.action_space.n # 动作维度
|
||||
agent = PPO(n_states, n_actions, cfg) # 创建智能体
|
||||
if cfg.seed !=0: # 设置随机种子
|
||||
torch.manual_seed(cfg.seed)
|
||||
env.seed(cfg.seed)
|
||||
np.random.seed(cfg.seed)
|
||||
return env, agent
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
steps = 0
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
while not done:
|
||||
action, prob, val = agent.choose_action(state)
|
||||
state_, reward, done, _ = env.step(action)
|
||||
steps += 1
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, prob, val, reward, done)
|
||||
if steps % cfg.update_fre == 0:
|
||||
agent.update()
|
||||
state = state_
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
if (i_ep+1)%10 == 0:
|
||||
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}")
|
||||
print('完成训练!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
def test(cfg,env,agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.test_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
while not done:
|
||||
action, prob, val = agent.choose_action(state)
|
||||
state_, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
state = state_
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.test_eps, ep_reward))
|
||||
print('完成训练!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = Config()
|
||||
# 训练
|
||||
env,agent = env_agent_config(cfg)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
||||
plot_rewards(rewards, ma_rewards, cfg, tag="train")
|
||||
# 测试
|
||||
env,agent = env_agent_config(cfg)
|
||||
agent.load(path=cfg.model_path)
|
||||
rewards,ma_rewards = test(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='test',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,cfg,tag="test")
|
||||
5
projects/.gitignore
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
.DS_Store
|
||||
.ipynb_checkpoints
|
||||
__pycache__
|
||||
.vscode
|
||||
test.py
|
||||
21
projects/LICENSE
Normal file
@@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2020 John Jim
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
49
projects/README.md
Normal file
@@ -0,0 +1,49 @@
|
||||
## 0、写在前面
|
||||
|
||||
本项目用于学习RL基础算法,尽量做到: **注释详细**(经过很长时间的纠结,还是中文注释好了!!!),**结构清晰**。
|
||||
|
||||
代码结构主要分为以下几个脚本:
|
||||
|
||||
* ```[algorithm_name].py```:即保存算法的脚本,例如```dqn.py```,每种算法都会有一定的基础模块,例如```Replay Buffer```、```MLP```(多层感知机)等等;
|
||||
* ```task.py```: 即保存任务的脚本,基本包括基于```argparse```模块的参数,训练以及测试函数等等;
|
||||
* ```utils.py```:该脚本用于保存诸如存储结果以及画图的软件,在实际项目或研究中,推荐大家使用```Tensorboard```来保存结果,然后使用诸如```matplotlib```以及```seabron```来进一步画图。
|
||||
|
||||
## 运行环境
|
||||
|
||||
python 3.7、pytorch 1.6.0-1.9.0、gym 0.21.0
|
||||
|
||||
或者在```README.md```目录下执行以下命令复现环境:
|
||||
```bash
|
||||
conda env create -f environment.yaml
|
||||
```
|
||||
## 使用说明
|
||||
|
||||
直接运行带有```train```的py文件或ipynb文件会进行训练默认的任务;
|
||||
也可以运行带有```task```的py文件训练不同的任务
|
||||
|
||||
## 内容导航
|
||||
|
||||
| 算法名称 | 相关论文材料 | 环境 | 备注 |
|
||||
| :--------------------------------------: | :----------------------------------------------------------: | ----------------------------------------- | :--------------------------------: |
|
||||
| [On-Policy First-Visit MC](./MonteCarlo) | [medium blog](https://medium.com/analytics-vidhya/monte-carlo-methods-in-reinforcement-learning-part-1-on-policy-methods-1f004d59686a) | [Racetrack](./envs/racetrack_env.md) | |
|
||||
| [Q-Learning](./QLearning) | [towardsdatascience blog](https://towardsdatascience.com/simple-reinforcement-learning-q-learning-fcddc4b6fe56),[q learning paper](https://ieeexplore.ieee.org/document/8836506) | [CliffWalking-v0](./envs/gym_info.md) | |
|
||||
| [Sarsa](./Sarsa) | [geeksforgeeks blog](https://www.geeksforgeeks.org/sarsa-reinforcement-learning/) | [Racetrack](./envs/racetrack_env.md) | |
|
||||
| [DQN](./DQN) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf),[Nature DQN Paper](https://www.nature.com/articles/nature14236) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [DQN-cnn](./DQN_cnn) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | 与DQN相比使用了CNN而不是全链接网络 |
|
||||
| [DoubleDQN](./DoubleDQN) | [DoubleDQN Paper](https://arxiv.org/abs/1509.06461) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [Hierarchical DQN](HierarchicalDQN) | [H-DQN Paper](https://arxiv.org/abs/1604.06057) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [PolicyGradient](./PolicyGradient) | [Lil'log](https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [A2C](./A2C) | [A3C Paper](https://arxiv.org/abs/1602.01783) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [SAC](./SoftActorCritic) | [SAC Paper](https://arxiv.org/abs/1801.01290) | [Pendulum-v0](./envs/gym_info.md) | |
|
||||
| [PPO](./PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [CartPole-v0](./envs/gym_info.md) | |
|
||||
| [DDPG](./DDPG) | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | |
|
||||
| [TD3](./TD3) | [TD3 Paper](https://arxiv.org/abs/1802.09477) | [HalfCheetah-v2]((./envs/mujoco_info.md)) | |
|
||||
|
||||
|
||||
## Refs
|
||||
|
||||
[RL-Adventure-2](https://github.com/higgsfield/RL-Adventure-2)
|
||||
|
||||
[RL-Adventure](https://github.com/higgsfield/RL-Adventure)
|
||||
|
||||
[Google 开源项目风格指南——中文版](https://zh-google-styleguide.readthedocs.io/en/latest/google-python-styleguide/python_style_rules/#comments)
|
||||
|
Before Width: | Height: | Size: 64 KiB After Width: | Height: | Size: 64 KiB |
|
Before Width: | Height: | Size: 42 KiB After Width: | Height: | Size: 42 KiB |
|
Before Width: | Height: | Size: 66 KiB After Width: | Height: | Size: 66 KiB |
|
Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 36 KiB |
|
Before Width: | Height: | Size: 76 KiB After Width: | Height: | Size: 76 KiB |
|
Before Width: | Height: | Size: 58 KiB After Width: | Height: | Size: 58 KiB |
|
Before Width: | Height: | Size: 37 KiB After Width: | Height: | Size: 37 KiB |
|
Before Width: | Height: | Size: 325 KiB After Width: | Height: | Size: 325 KiB |
|
Before Width: | Height: | Size: 28 KiB After Width: | Height: | Size: 28 KiB |
|
Before Width: | Height: | Size: 48 KiB After Width: | Height: | Size: 48 KiB |
|
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 17 KiB |
|
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
|
Before Width: | Height: | Size: 105 KiB After Width: | Height: | Size: 105 KiB |
|
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 74 KiB |
|
Before Width: | Height: | Size: 185 KiB After Width: | Height: | Size: 185 KiB |
|
Before Width: | Height: | Size: 75 KiB After Width: | Height: | Size: 75 KiB |
|
Before Width: | Height: | Size: 44 KiB After Width: | Height: | Size: 44 KiB |
|
Before Width: | Height: | Size: 44 KiB After Width: | Height: | Size: 44 KiB |
|
Before Width: | Height: | Size: 121 KiB After Width: | Height: | Size: 121 KiB |
|
Before Width: | Height: | Size: 112 KiB After Width: | Height: | Size: 112 KiB |
|
Before Width: | Height: | Size: 311 KiB After Width: | Height: | Size: 311 KiB |
|
Before Width: | Height: | Size: 62 KiB After Width: | Height: | Size: 62 KiB |
|
Before Width: | Height: | Size: 77 KiB After Width: | Height: | Size: 77 KiB |
|
Before Width: | Height: | Size: 180 KiB After Width: | Height: | Size: 180 KiB |
|
Before Width: | Height: | Size: 79 KiB After Width: | Height: | Size: 79 KiB |
|
Before Width: | Height: | Size: 38 KiB After Width: | Height: | Size: 38 KiB |
|
Before Width: | Height: | Size: 13 KiB After Width: | Height: | Size: 13 KiB |
|
Before Width: | Height: | Size: 75 KiB After Width: | Height: | Size: 75 KiB |
|
Before Width: | Height: | Size: 37 KiB After Width: | Height: | Size: 37 KiB |