update projects

This commit is contained in:
johnjim0816
2022-07-31 23:42:12 +08:00
parent e9b3e92141
commit ffab9e3028
236 changed files with 370 additions and 133 deletions

View File

@@ -0,0 +1,13 @@
# Hierarchical DQN
## 原理简介
Hierarchical DQN是一种分层强化学习方法与DQN相比增加了一个meta controller
![image-20210331153115575](assets/image-20210331153115575.png)
即学习时meta controller每次会生成一个goal然后controller或者说下面的actor就会达到这个goal直到done为止。这就相当于给agent增加了一个队长队长擅长制定局部目标指导agent前行这样应对一些每回合步数较长或者稀疏奖励的问题会有所帮助。
## 伪代码
![image-20210331153542314](assets/image-20210331153542314.png)

View File

@@ -0,0 +1,154 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-24 22:18:18
LastEditor: John
LastEditTime: 2021-05-04 22:39:34
Discription:
Environment:
'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
import random,math
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity # 经验回放的容量
self.buffer = [] # 缓冲区
self.position = 0
def push(self, state, action, reward, next_state, done):
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
'''
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
return state, action, reward, next_state, done
def __len__(self):
''' 返回当前存储的量
'''
return len(self.buffer)
class MLP(nn.Module):
def __init__(self, input_dim,output_dim,hidden_dim=128):
""" 初始化q网络为全连接网络
input_dim: 输入的特征数即环境的状态维度
output_dim: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, output_dim) # 输出层
def forward(self, x):
# 各层对应的激活函数
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
class HierarchicalDQN:
def __init__(self,n_states,n_actions,cfg):
self.n_states = n_states
self.n_actions = n_actions
self.gamma = cfg.gamma
self.device = cfg.device
self.batch_size = cfg.batch_size
self.frame_idx = 0 # 用于epsilon的衰减计数
self.epsilon = lambda frame_idx: cfg.epsilon_end + (cfg.epsilon_start - cfg.epsilon_end ) * math.exp(-1. * frame_idx / cfg.epsilon_decay)
self.policy_net = MLP(2*n_states, n_actions,cfg.hidden_dim).to(self.device)
self.meta_policy_net = MLP(n_states, n_states,cfg.hidden_dim).to(self.device)
self.optimizer = optim.Adam(self.policy_net.parameters(),lr=cfg.lr)
self.meta_optimizer = optim.Adam(self.meta_policy_net.parameters(),lr=cfg.lr)
self.memory = ReplayBuffer(cfg.memory_capacity)
self.meta_memory = ReplayBuffer(cfg.memory_capacity)
self.loss_numpy = 0
self.meta_loss_numpy = 0
self.losses = []
self.meta_losses = []
def to_onehot(self,x):
oh = np.zeros(self.n_states)
oh[x - 1] = 1.
return oh
def set_goal(self,state):
if random.random() > self.epsilon(self.frame_idx):
with torch.no_grad():
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
goal = self.meta_policy_net(state).max(1)[1].item()
else:
goal = random.randrange(self.n_states)
return goal
def choose_action(self,state):
self.frame_idx += 1
if random.random() > self.epsilon(self.frame_idx):
with torch.no_grad():
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
q_value = self.policy_net(state)
action = q_value.max(1)[1].item()
else:
action = random.randrange(self.n_actions)
return action
def update(self):
self.update_policy()
self.update_meta()
def update_policy(self):
if self.batch_size > len(self.memory):
return
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size)
state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float)
action_batch = torch.tensor(action_batch,device=self.device,dtype=torch.int64).unsqueeze(1)
reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float)
next_state_batch = torch.tensor(next_state_batch,device=self.device, dtype=torch.float)
done_batch = torch.tensor(np.float32(done_batch),device=self.device)
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1)
next_state_values = self.policy_net(next_state_batch).max(1)[0].detach()
expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch)
loss = nn.MSELoss()(q_values, expected_q_values)
self.optimizer.zero_grad()
loss.backward()
for param in self.policy_net.parameters(): # clip防止梯度爆炸
param.grad.data.clamp_(-1, 1)
self.optimizer.step()
self.loss_numpy = loss.detach().cpu().numpy()
self.losses.append(self.loss_numpy)
def update_meta(self):
if self.batch_size > len(self.meta_memory):
return
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.meta_memory.sample(self.batch_size)
state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float)
action_batch = torch.tensor(action_batch,device=self.device,dtype=torch.int64).unsqueeze(1)
reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float)
next_state_batch = torch.tensor(next_state_batch,device=self.device, dtype=torch.float)
done_batch = torch.tensor(np.float32(done_batch),device=self.device)
q_values = self.meta_policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1)
next_state_values = self.meta_policy_net(next_state_batch).max(1)[0].detach()
expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch)
meta_loss = nn.MSELoss()(q_values, expected_q_values)
self.meta_optimizer.zero_grad()
meta_loss.backward()
for param in self.meta_policy_net.parameters(): # clip防止梯度爆炸
param.grad.data.clamp_(-1, 1)
self.meta_optimizer.step()
self.meta_loss_numpy = meta_loss.detach().cpu().numpy()
self.meta_losses.append(self.meta_loss_numpy)
def save(self, path):
torch.save(self.policy_net.state_dict(), path+'policy_checkpoint.pth')
torch.save(self.meta_policy_net.state_dict(), path+'meta_checkpoint.pth')
def load(self, path):
self.policy_net.load_state_dict(torch.load(path+'policy_checkpoint.pth'))
self.meta_policy_net.load_state_dict(torch.load(path+'meta_checkpoint.pth'))

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 311 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

View File

@@ -0,0 +1,88 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-29 10:37:32
LastEditor: John
LastEditTime: 2021-05-04 22:35:56
Discription:
Environment:
'''
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import datetime
import numpy as np
import torch
import gym
from common.utils import save_results,make_dir
from common.utils import plot_rewards
from HierarchicalDQN.agent import HierarchicalDQN
from HierarchicalDQN.train import train,test
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = "Hierarchical DQN" # 算法名称
env_name = 'CartPole-v0' # 环境名称
class HierarchicalDQNConfig:
def __init__(self):
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 300 # 训练的episode数目
self.test_eps = 50 # 测试的episode数目
self.gamma = 0.99
self.epsilon_start = 1 # start epsilon of e-greedy policy
self.epsilon_end = 0.01
self.epsilon_decay = 200
self.lr = 0.0001 # learning rate
self.memory_capacity = 10000 # Replay Memory capacity
self.batch_size = 32
self.target_update = 2 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
class PlotConfig:
''' 绘图相关参数设置
'''
def __init__(self) -> None:
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
env.seed(seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = HierarchicalDQN(n_states,n_actions,cfg)
return env,agent
if __name__ == "__main__":
cfg = HierarchicalDQNConfig()
plot_cfg = PlotConfig()
# 训练
env, agent = env_agent_config(cfg, seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=plot_cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train',
path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg, seed=10)
agent.load(path=plot_cfg.model_path) # 导入模型
rewards, ma_rewards = test(cfg, env, agent)
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果

View File

@@ -0,0 +1,77 @@
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import numpy as np
def train(cfg, env, agent):
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
state = env.reset()
done = False
ep_reward = 0
while not done:
goal = agent.set_goal(state)
onehot_goal = agent.to_onehot(goal)
meta_state = state
extrinsic_reward = 0
while not done and goal != np.argmax(state):
goal_state = np.concatenate([state, onehot_goal])
action = agent.choose_action(goal_state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
extrinsic_reward += reward
intrinsic_reward = 1.0 if goal == np.argmax(
next_state) else 0.0
agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate(
[next_state, onehot_goal]), done)
state = next_state
agent.update()
if (i_ep+1)%10 == 0:
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward}Loss:{agent.loss_numpy:.2f} Meta_Loss:{agent.meta_loss_numpy:.2f}')
agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done)
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成训练!')
return rewards, ma_rewards
def test(cfg, env, agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
state = env.reset()
done = False
ep_reward = 0
while not done:
goal = agent.set_goal(state)
onehot_goal = agent.to_onehot(goal)
extrinsic_reward = 0
while not done and goal != np.argmax(state):
goal_state = np.concatenate([state, onehot_goal])
action = agent.choose_action(goal_state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
extrinsic_reward += reward
state = next_state
agent.update()
if (i_ep+1)%10 == 0:
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward}Loss:{agent.loss_numpy:.2f} Meta_Loss:{agent.meta_loss_numpy:.2f}')
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成训练!')
return rewards, ma_rewards