update Sarsa
This commit is contained in:
19
codes/Sarsa/README.md
Normal file
19
codes/Sarsa/README.md
Normal file
@@ -0,0 +1,19 @@
|
||||
# Sarsa
|
||||
|
||||
## 使用说明
|
||||
|
||||
运行```main.py```即可
|
||||
|
||||
## 环境说明
|
||||
|
||||
见[环境说明](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/env_info.md)中的The Racetrack
|
||||
|
||||
## 算法伪代码
|
||||
|
||||

|
||||
|
||||
## 其他说明
|
||||
|
||||
### 与Q-learning区别
|
||||
|
||||
算法上区别很小,只在更新公式上,但Q-learning是Off-policy,而Sarsa是On-policy,可参考[知乎:强化学习中sarsa算法是不是比q-learning算法收敛速度更慢?](https://www.zhihu.com/question/268461866)
|
||||
@@ -1,74 +1,52 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-12 16:58:16
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-12 17:03:05
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import numpy as np
|
||||
|
||||
# 根据Q表格选动作
|
||||
class SarsaAgent(object):
|
||||
from collections import defaultdict
|
||||
import torch
|
||||
class Sarsa(object):
|
||||
def __init__(self,
|
||||
obs_n,
|
||||
act_n,
|
||||
learning_rate=0.01,
|
||||
gamma=0.9,
|
||||
e_greed=0.1):
|
||||
self.act_n = act_n # 动作维度,有几个动作可选
|
||||
self.lr = learning_rate # 学习率
|
||||
self.gamma = gamma # reward的衰减率
|
||||
self.epsilon = e_greed # 按一定概率随机选动作
|
||||
self.Q = np.zeros((obs_n, act_n)) # 初始化Q表格
|
||||
|
||||
# 根据输入观察值,采样输出的动作值,带探索(epsilon-greedy,训练时用这个方法)
|
||||
def sample(self, obs):
|
||||
if np.random.uniform(0, 1) < (1.0 - self.epsilon): #根据table的Q值选动作
|
||||
action = self.predict(obs)
|
||||
else:
|
||||
action = np.random.choice(self.act_n) #有一定概率随机探索选取一个动作
|
||||
n_actions,sarsa_cfg,):
|
||||
self.n_actions = n_actions # number of actions
|
||||
self.lr = sarsa_cfg.lr # learning rate
|
||||
self.gamma = sarsa_cfg.gamma
|
||||
self.epsilon = sarsa_cfg.epsilon
|
||||
self.Q = defaultdict(lambda: np.zeros(n_actions))
|
||||
# self.Q = np.zeros((n_states, n_actions)) # Q表
|
||||
def choose_action(self, state):
|
||||
best_action = np.argmax(self.Q[state])
|
||||
# action = best_action
|
||||
action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions
|
||||
action_probs[best_action] += (1.0 - self.epsilon)
|
||||
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
|
||||
return action
|
||||
|
||||
# 根据输入观察值,预测输出的动作值(已有里面挑最大,贪心的算法,只有利用,没有探索)
|
||||
def predict(self, obs):
|
||||
Q_list = self.Q[obs, :]
|
||||
maxQ = np.max(Q_list) # 找到最大Q对应的下标
|
||||
action_list = np.where(Q_list == maxQ)[0] # maxQ可能对应多个action
|
||||
action = np.random.choice(action_list) # 从这些action中随机挑一个action(可以打印出来看看)
|
||||
return action
|
||||
|
||||
# 学习方法,也就是更新Q-table的方法
|
||||
def learn(self, obs, action, reward, next_obs, next_action, done):
|
||||
""" on-policy
|
||||
obs: 交互前的obs, s_t
|
||||
action: 本次交互选择的action, a_t
|
||||
reward: 本次动作获得的奖励r
|
||||
next_obs: 本次交互后的obs, s_t+1
|
||||
next_action: 根据当前Q表格, 针对next_obs会选择的动作, a_t+1
|
||||
done: episode是否结束
|
||||
"""
|
||||
predict_Q = self.Q[obs, action]
|
||||
if done: # done为ture的话,代表这是episode最后一个状态
|
||||
target_Q = reward # 没有下一个状态了
|
||||
|
||||
def update(self, state, action, reward, next_state, next_action,done):
|
||||
Q_predict = self.Q[state][action]
|
||||
if done:
|
||||
Q_target = reward # terminal state
|
||||
else:
|
||||
target_Q = reward + self.gamma * self.Q[next_obs,
|
||||
next_action] # Sarsa
|
||||
self.Q[obs, action] += self.lr * (target_Q - predict_Q) # 修正q
|
||||
|
||||
def save(self):
|
||||
npy_file = './q_table.npy'
|
||||
np.save(npy_file, self.Q)
|
||||
print(npy_file + ' saved.')
|
||||
|
||||
def restore(self, npy_file='./q_table.npy'):
|
||||
self.Q = np.load(npy_file)
|
||||
print(npy_file + ' loaded.')
|
||||
Q_target = reward + self.gamma * self.Q[next_state][next_action]
|
||||
self.Q[state][action] += self.lr * (Q_target - Q_predict)
|
||||
def save(self,path):
|
||||
'''把 Q表格 的数据保存到文件中
|
||||
'''
|
||||
import dill
|
||||
torch.save(
|
||||
obj=self.Q,
|
||||
f=path+"Sarsa_model.pkl",
|
||||
pickle_module=dill
|
||||
)
|
||||
def load(self, path):
|
||||
'''从文件中读取数据到 Q表格
|
||||
'''
|
||||
import dill
|
||||
self.Q =torch.load(f=path+'Sarsa_model.pkl',pickle_module=dill)
|
||||
BIN
codes/Sarsa/assets/sarsa_algo.png
Normal file
BIN
codes/Sarsa/assets/sarsa_algo.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 132 KiB |
@@ -1,195 +0,0 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import gym
|
||||
import turtle
|
||||
import numpy as np
|
||||
|
||||
# turtle tutorial : https://docs.python.org/3.3/library/turtle.html
|
||||
|
||||
|
||||
def GridWorld(gridmap=None, is_slippery=False):
|
||||
if gridmap is None:
|
||||
gridmap = ['SFFF', 'FHFH', 'FFFH', 'HFFG']
|
||||
env = gym.make("FrozenLake-v0", desc=gridmap, is_slippery=False)
|
||||
env = FrozenLakeWapper(env)
|
||||
return env
|
||||
|
||||
|
||||
class FrozenLakeWapper(gym.Wrapper):
|
||||
def __init__(self, env):
|
||||
gym.Wrapper.__init__(self, env)
|
||||
self.max_y = env.desc.shape[0]
|
||||
self.max_x = env.desc.shape[1]
|
||||
self.t = None
|
||||
self.unit = 50
|
||||
|
||||
def draw_box(self, x, y, fillcolor='', line_color='gray'):
|
||||
self.t.up()
|
||||
self.t.goto(x * self.unit, y * self.unit)
|
||||
self.t.color(line_color)
|
||||
self.t.fillcolor(fillcolor)
|
||||
self.t.setheading(90)
|
||||
self.t.down()
|
||||
self.t.begin_fill()
|
||||
for _ in range(4):
|
||||
self.t.forward(self.unit)
|
||||
self.t.right(90)
|
||||
self.t.end_fill()
|
||||
|
||||
def move_player(self, x, y):
|
||||
self.t.up()
|
||||
self.t.setheading(90)
|
||||
self.t.fillcolor('red')
|
||||
self.t.goto((x + 0.5) * self.unit, (y + 0.5) * self.unit)
|
||||
|
||||
def render(self):
|
||||
if self.t == None:
|
||||
self.t = turtle.Turtle()
|
||||
self.wn = turtle.Screen()
|
||||
self.wn.setup(self.unit * self.max_x + 100,
|
||||
self.unit * self.max_y + 100)
|
||||
self.wn.setworldcoordinates(0, 0, self.unit * self.max_x,
|
||||
self.unit * self.max_y)
|
||||
self.t.shape('circle')
|
||||
self.t.width(2)
|
||||
self.t.speed(0)
|
||||
self.t.color('gray')
|
||||
for i in range(self.desc.shape[0]):
|
||||
for j in range(self.desc.shape[1]):
|
||||
x = j
|
||||
y = self.max_y - 1 - i
|
||||
if self.desc[i][j] == b'S': # Start
|
||||
self.draw_box(x, y, 'white')
|
||||
elif self.desc[i][j] == b'F': # Frozen ice
|
||||
self.draw_box(x, y, 'white')
|
||||
elif self.desc[i][j] == b'G': # Goal
|
||||
self.draw_box(x, y, 'yellow')
|
||||
elif self.desc[i][j] == b'H': # Hole
|
||||
self.draw_box(x, y, 'black')
|
||||
else:
|
||||
self.draw_box(x, y, 'white')
|
||||
self.t.shape('turtle')
|
||||
|
||||
x_pos = self.s % self.max_x
|
||||
y_pos = self.max_y - 1 - int(self.s / self.max_x)
|
||||
self.move_player(x_pos, y_pos)
|
||||
|
||||
|
||||
class CliffWalkingWapper(gym.Wrapper):
|
||||
def __init__(self, env):
|
||||
gym.Wrapper.__init__(self, env)
|
||||
self.t = None
|
||||
self.unit = 50
|
||||
self.max_x = 12
|
||||
self.max_y = 4
|
||||
|
||||
def draw_x_line(self, y, x0, x1, color='gray'):
|
||||
assert x1 > x0
|
||||
self.t.color(color)
|
||||
self.t.setheading(0)
|
||||
self.t.up()
|
||||
self.t.goto(x0, y)
|
||||
self.t.down()
|
||||
self.t.forward(x1 - x0)
|
||||
|
||||
def draw_y_line(self, x, y0, y1, color='gray'):
|
||||
assert y1 > y0
|
||||
self.t.color(color)
|
||||
self.t.setheading(90)
|
||||
self.t.up()
|
||||
self.t.goto(x, y0)
|
||||
self.t.down()
|
||||
self.t.forward(y1 - y0)
|
||||
|
||||
def draw_box(self, x, y, fillcolor='', line_color='gray'):
|
||||
self.t.up()
|
||||
self.t.goto(x * self.unit, y * self.unit)
|
||||
self.t.color(line_color)
|
||||
self.t.fillcolor(fillcolor)
|
||||
self.t.setheading(90)
|
||||
self.t.down()
|
||||
self.t.begin_fill()
|
||||
for i in range(4):
|
||||
self.t.forward(self.unit)
|
||||
self.t.right(90)
|
||||
self.t.end_fill()
|
||||
|
||||
def move_player(self, x, y):
|
||||
self.t.up()
|
||||
self.t.setheading(90)
|
||||
self.t.fillcolor('red')
|
||||
self.t.goto((x + 0.5) * self.unit, (y + 0.5) * self.unit)
|
||||
|
||||
def render(self):
|
||||
if self.t == None:
|
||||
self.t = turtle.Turtle()
|
||||
self.wn = turtle.Screen()
|
||||
self.wn.setup(self.unit * self.max_x + 100,
|
||||
self.unit * self.max_y + 100)
|
||||
self.wn.setworldcoordinates(0, 0, self.unit * self.max_x,
|
||||
self.unit * self.max_y)
|
||||
self.t.shape('circle')
|
||||
self.t.width(2)
|
||||
self.t.speed(0)
|
||||
self.t.color('gray')
|
||||
for _ in range(2):
|
||||
self.t.forward(self.max_x * self.unit)
|
||||
self.t.left(90)
|
||||
self.t.forward(self.max_y * self.unit)
|
||||
self.t.left(90)
|
||||
for i in range(1, self.max_y):
|
||||
self.draw_x_line(
|
||||
y=i * self.unit, x0=0, x1=self.max_x * self.unit)
|
||||
for i in range(1, self.max_x):
|
||||
self.draw_y_line(
|
||||
x=i * self.unit, y0=0, y1=self.max_y * self.unit)
|
||||
|
||||
for i in range(1, self.max_x - 1):
|
||||
self.draw_box(i, 0, 'black')
|
||||
self.draw_box(self.max_x - 1, 0, 'yellow')
|
||||
self.t.shape('turtle')
|
||||
|
||||
x_pos = self.s % self.max_x
|
||||
y_pos = self.max_y - 1 - int(self.s / self.max_x)
|
||||
self.move_player(x_pos, y_pos)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# 环境1:FrozenLake, 可以配置冰面是否是滑的
|
||||
# 0 left, 1 down, 2 right, 3 up
|
||||
env = gym.make("FrozenLake-v0", is_slippery=False)
|
||||
env = FrozenLakeWapper(env)
|
||||
|
||||
# 环境2:CliffWalking, 悬崖环境
|
||||
# env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||||
# env = CliffWalkingWapper(env)
|
||||
|
||||
# 环境3:自定义格子世界,可以配置地图, S为出发点Start, F为平地Floor, H为洞Hole, G为出口目标Goal
|
||||
# gridmap = [
|
||||
# 'SFFF',
|
||||
# 'FHFF',
|
||||
# 'FFFF',
|
||||
# 'HFGF' ]
|
||||
# env = GridWorld(gridmap)
|
||||
|
||||
env.reset()
|
||||
for step in range(10):
|
||||
action = np.random.randint(0, 4)
|
||||
obs, reward, done, info = env.step(action)
|
||||
print('step {}: action {}, obs {}, reward {}, done {}, info {}'.format(\
|
||||
step, action, obs, reward, done, info))
|
||||
# env.render() # 渲染一帧图像
|
||||
80
codes/Sarsa/main.py
Normal file
80
codes/Sarsa/main.py
Normal file
@@ -0,0 +1,80 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-11 17:59:16
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-12 17:01:43
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
sys.path.append(os.getcwd())
|
||||
import datetime
|
||||
from envs.racetrack_env import RacetrackEnv
|
||||
from Sarsa.agent import Sarsa
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(RESULT_PATH)
|
||||
|
||||
class SarsaConfig:
|
||||
''' parameters for Sarsa
|
||||
'''
|
||||
def __init__(self):
|
||||
self.epsilon = 0.15 # epsilon: The probability to select a random action .
|
||||
self.gamma = 0.9 # gamma: Gamma discount factor.
|
||||
self.lr = 0.2 # learning rate: step size parameter
|
||||
self.n_episodes = 150
|
||||
self.n_steps = 2000
|
||||
|
||||
def sarsa_train(cfg,env,agent):
|
||||
rewards = []
|
||||
ma_rewards = []
|
||||
for i_episode in range(cfg.n_episodes):
|
||||
# Print out which episode we're on, useful for debugging.
|
||||
# Generate an episode.
|
||||
# An episode is an array of (state, action, reward) tuples
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
while True:
|
||||
# for t in range(cfg.n_steps):
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done = env.step(action)
|
||||
ep_reward+=reward
|
||||
next_action = agent.choose_action(next_state)
|
||||
agent.update(state, action, reward, next_state, next_action,done)
|
||||
state = next_state
|
||||
if done:
|
||||
break
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
rewards.append(ep_reward)
|
||||
# if (i_episode+1)%10==0:
|
||||
# print("Episode:{}/{}: Reward:{}".format(i_episode+1, cfg.n_episodes,ep_reward))
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
sarsa_cfg = SarsaConfig()
|
||||
env = RacetrackEnv()
|
||||
n_actions=9
|
||||
agent = Sarsa(n_actions,sarsa_cfg)
|
||||
rewards,ma_rewards = sarsa_train(sarsa_cfg,env,agent)
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = "On-Policy First-Visit MC Control",path=RESULT_PATH)
|
||||
|
||||
|
||||
BIN
codes/Sarsa/results/20210312-170254/ma_rewards_train.npy
Normal file
BIN
codes/Sarsa/results/20210312-170254/ma_rewards_train.npy
Normal file
Binary file not shown.
BIN
codes/Sarsa/results/20210312-170254/rewards_curve_train.png
Normal file
BIN
codes/Sarsa/results/20210312-170254/rewards_curve_train.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 37 KiB |
BIN
codes/Sarsa/results/20210312-170254/rewards_train.npy
Normal file
BIN
codes/Sarsa/results/20210312-170254/rewards_train.npy
Normal file
Binary file not shown.
BIN
codes/Sarsa/saved_model/20210312-170254/Sarsa_model.pkl
Normal file
BIN
codes/Sarsa/saved_model/20210312-170254/Sarsa_model.pkl
Normal file
Binary file not shown.
@@ -1,92 +0,0 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import gym
|
||||
from gridworld import CliffWalkingWapper, FrozenLakeWapper
|
||||
from agent import SarsaAgent
|
||||
import time
|
||||
|
||||
|
||||
def run_episode(env, agent, render=False):
|
||||
total_steps = 0 # 记录每个episode走了多少step
|
||||
total_reward = 0
|
||||
|
||||
obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||||
action = agent.sample(obs) # 根据算法选择一个动作
|
||||
|
||||
while True:
|
||||
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||||
next_action = agent.sample(next_obs) # 根据算法选择一个动作
|
||||
# 训练 Sarsa 算法
|
||||
agent.learn(obs, action, reward, next_obs, next_action, done)
|
||||
|
||||
action = next_action
|
||||
obs = next_obs # 存储上一个观察值
|
||||
total_reward += reward
|
||||
total_steps += 1 # 计算step数
|
||||
if render:
|
||||
env.render() #渲染新的一帧图形
|
||||
if done:
|
||||
break
|
||||
return total_reward, total_steps
|
||||
|
||||
|
||||
def test_episode(env, agent):
|
||||
total_reward = 0
|
||||
obs = env.reset()
|
||||
while True:
|
||||
action = agent.predict(obs) # greedy,只取最优的动作
|
||||
next_obs, reward, done, _ = env.step(action)
|
||||
total_reward += reward
|
||||
obs = next_obs
|
||||
time.sleep(0.5) # 每个step延迟0.5秒来看看效果
|
||||
env.render()
|
||||
if done:
|
||||
print('test reward = %.1f' % (total_reward))
|
||||
break
|
||||
|
||||
|
||||
def main():
|
||||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||||
# env = FrozenLakeWapper(env)
|
||||
|
||||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||||
env = CliffWalkingWapper(env) # 这行不加也可以,这个是为了显示效果更好一点
|
||||
|
||||
agent = SarsaAgent(
|
||||
obs_n=env.observation_space.n,
|
||||
act_n=env.action_space.n,
|
||||
learning_rate=0.1,
|
||||
gamma=0.9,
|
||||
e_greed=0.1)
|
||||
|
||||
is_render = False
|
||||
for episode in range(500):
|
||||
ep_reward, ep_steps = run_episode(env, agent, is_render)
|
||||
print('Episode %s: steps = %s , reward = %.1f' % (episode, ep_steps,
|
||||
ep_reward))
|
||||
|
||||
# 每隔20个episode渲染一下看看效果(每个episode都渲染的话,时间会比较长)
|
||||
if episode % 20 == 0:
|
||||
is_render = True
|
||||
else:
|
||||
is_render = False
|
||||
# 训练结束,查看算法效果
|
||||
test_episode(env, agent)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user