92 lines
3.0 KiB
Python
92 lines
3.0 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
# -*- coding: utf-8 -*-
|
||
|
||
import gym
|
||
from gridworld import CliffWalkingWapper, FrozenLakeWapper
|
||
from agent import SarsaAgent
|
||
import time
|
||
|
||
|
||
def run_episode(env, agent, render=False):
|
||
total_steps = 0 # 记录每个episode走了多少step
|
||
total_reward = 0
|
||
|
||
obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||
action = agent.sample(obs) # 根据算法选择一个动作
|
||
|
||
while True:
|
||
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||
next_action = agent.sample(next_obs) # 根据算法选择一个动作
|
||
# 训练 Sarsa 算法
|
||
agent.learn(obs, action, reward, next_obs, next_action, done)
|
||
|
||
action = next_action
|
||
obs = next_obs # 存储上一个观察值
|
||
total_reward += reward
|
||
total_steps += 1 # 计算step数
|
||
if render:
|
||
env.render() #渲染新的一帧图形
|
||
if done:
|
||
break
|
||
return total_reward, total_steps
|
||
|
||
|
||
def test_episode(env, agent):
|
||
total_reward = 0
|
||
obs = env.reset()
|
||
while True:
|
||
action = agent.predict(obs) # greedy,只取最优的动作
|
||
next_obs, reward, done, _ = env.step(action)
|
||
total_reward += reward
|
||
obs = next_obs
|
||
time.sleep(0.5) # 每个step延迟0.5秒来看看效果
|
||
env.render()
|
||
if done:
|
||
print('test reward = %.1f' % (total_reward))
|
||
break
|
||
|
||
|
||
def main():
|
||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||
# env = FrozenLakeWapper(env)
|
||
|
||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||
env = CliffWalkingWapper(env) # 这行不加也可以,这个是为了显示效果更好一点
|
||
|
||
agent = SarsaAgent(
|
||
obs_n=env.observation_space.n,
|
||
act_n=env.action_space.n,
|
||
learning_rate=0.1,
|
||
gamma=0.9,
|
||
e_greed=0.1)
|
||
|
||
is_render = False
|
||
for episode in range(500):
|
||
ep_reward, ep_steps = run_episode(env, agent, is_render)
|
||
print('Episode %s: steps = %s , reward = %.1f' % (episode, ep_steps,
|
||
ep_reward))
|
||
|
||
# 每隔20个episode渲染一下看看效果(每个episode都渲染的话,时间会比较长)
|
||
if episode % 20 == 0:
|
||
is_render = True
|
||
else:
|
||
is_render = False
|
||
# 训练结束,查看算法效果
|
||
test_episode(env, agent)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main() |