Files
easy-rl/codes/Sarsa/agent.py
JohnJim0816 f1394feb65 update Sarsa
2021-03-12 17:19:04 +08:00

52 lines
1.7 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-12 16:58:16
LastEditor: John
LastEditTime: 2021-03-12 17:03:05
Discription:
Environment:
'''
import numpy as np
from collections import defaultdict
import torch
class Sarsa(object):
def __init__(self,
n_actions,sarsa_cfg,):
self.n_actions = n_actions # number of actions
self.lr = sarsa_cfg.lr # learning rate
self.gamma = sarsa_cfg.gamma
self.epsilon = sarsa_cfg.epsilon
self.Q = defaultdict(lambda: np.zeros(n_actions))
# self.Q = np.zeros((n_states, n_actions)) # Q表
def choose_action(self, state):
best_action = np.argmax(self.Q[state])
# action = best_action
action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions
action_probs[best_action] += (1.0 - self.epsilon)
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
return action
def update(self, state, action, reward, next_state, next_action,done):
Q_predict = self.Q[state][action]
if done:
Q_target = reward # terminal state
else:
Q_target = reward + self.gamma * self.Q[next_state][next_action]
self.Q[state][action] += self.lr * (Q_target - Q_predict)
def save(self,path):
'''把 Q表格 的数据保存到文件中
'''
import dill
torch.save(
obj=self.Q,
f=path+"Sarsa_model.pkl",
pickle_module=dill
)
def load(self, path):
'''从文件中读取数据到 Q表格
'''
import dill
self.Q =torch.load(f=path+'Sarsa_model.pkl',pickle_module=dill)