update
@@ -5,68 +5,78 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:48:57
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-04-13 19:03:39
|
||||
LastEditTime: 2021-04-18 14:44:45
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
from DQN.agent import DQN
|
||||
from common.utils import save_results, make_dir, del_empty_dir
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results,make_dir,del_empty_dir
|
||||
from DQN.agent import DQN
|
||||
import datetime
|
||||
import torch
|
||||
import gym
|
||||
import sys
|
||||
import os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path = os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
|
||||
curr_time = datetime.datetime.now().strftime(
|
||||
"%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
class DQNConfig:
|
||||
def __init__(self):
|
||||
self.algo = "DQN" # name of algo
|
||||
self.env = 'CartPole-v0'
|
||||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/' # path to save results
|
||||
self.result_path = curr_path+"/outputs/" + self.env + \
|
||||
'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/outputs/" + self.env + \
|
||||
'/'+curr_time+'/models/' # path to save results
|
||||
self.gamma = 0.95
|
||||
self.epsilon_start = 1 # e-greedy策略的初始epsilon
|
||||
self.epsilon_start = 1 # e-greedy策略的初始epsilon
|
||||
self.epsilon_end = 0.01
|
||||
self.epsilon_decay = 500
|
||||
self.lr = 0.0001 # learning rate
|
||||
self.memory_capacity = 10000 # Replay Memory容量
|
||||
self.lr = 0.0001 # learning rate
|
||||
self.memory_capacity = 10000 # Replay Memory容量
|
||||
self.batch_size = 32
|
||||
self.train_eps = 10 # 训练的episode数目
|
||||
self.target_update = 2 # target net的更新频率
|
||||
self.eval_eps = 20 # 测试的episode数目
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
self.hidden_dim = 256 # 神经网络隐藏层维度
|
||||
|
||||
def train(cfg,env,agent):
|
||||
self.train_eps = 300 # 训练的episode数目
|
||||
self.target_update = 2 # target net的更新频率
|
||||
self.eval_eps = 20 # 测试的episode数目
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
self.hidden_dim = 256 # 神经网络隐藏层维度
|
||||
|
||||
|
||||
def train(cfg, env, agent):
|
||||
print('Start to train !')
|
||||
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
|
||||
rewards = []
|
||||
ma_rewards = [] # moveing average reward
|
||||
ma_rewards = [] # moveing average reward
|
||||
for i_episode in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
while not done:
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, reward, next_state, done)
|
||||
state = next_state
|
||||
agent.update()
|
||||
agent.memory.push(state, action, reward, next_state, done)
|
||||
state = next_state
|
||||
agent.update()
|
||||
if i_episode % cfg.target_update == 0:
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward))
|
||||
print('Episode:{}/{}, Reward:{}'.format(i_episode+1, cfg.train_eps, ep_reward))
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
ma_rewards.append(ep_reward)
|
||||
print('Complete training!')
|
||||
return rewards,ma_rewards
|
||||
return rewards, ma_rewards
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = DQNConfig()
|
||||
@@ -74,9 +84,10 @@ if __name__ == "__main__":
|
||||
env.seed(1)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.n
|
||||
agent = DQN(state_dim,action_dim,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(cfg.result_path)
|
||||
agent.save(path=cfg.result_path)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=cfg.result_path)
|
||||
agent = DQN(state_dim, action_dim, cfg)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
|
||||
plot_rewards(rewards, ma_rewards, tag="train",
|
||||
algo=cfg.algo, path=cfg.result_path)
|
||||
|
||||
|
After Width: | Height: | Size: 45 KiB |
|
Before Width: | Height: | Size: 48 KiB |
@@ -1,88 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:48:57
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-04-13 18:49:44
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
from DQN.agent import DQN
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results,make_dir,del_empty_dir
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
|
||||
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
|
||||
make_dir(curr_path+"/saved_model/",curr_path+"/results/")
|
||||
del_empty_dir(curr_path+"/saved_model/",curr_path+"/results/")
|
||||
|
||||
class DQNConfig:
|
||||
def __init__(self):
|
||||
self.env = 'LunarLander-v2'
|
||||
self.algo = "DQN" # name of algo
|
||||
self.gamma = 0.95
|
||||
self.epsilon_start = 1 # e-greedy策略的初始epsilon
|
||||
self.epsilon_end = 0.01
|
||||
self.epsilon_decay = 500
|
||||
self.lr = 0.0001 # learning rate
|
||||
self.memory_capacity = 1000000 # Replay Memory容量
|
||||
self.batch_size = 64
|
||||
self.train_eps = 300 # 训练的episode数目
|
||||
self.train_steps = 1000
|
||||
self.target_update = 2 # target net的更新频率
|
||||
self.eval_eps = 20 # 测试的episode数目
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
self.hidden_dim = 256 # 神经网络隐藏层维度
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print('Start to train !')
|
||||
rewards = []
|
||||
ma_rewards = [] # moveing average reward
|
||||
for i_episode in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
for i_step in range(cfg.train_steps):
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, reward, next_state, done)
|
||||
state = next_state
|
||||
agent.update()
|
||||
if done:
|
||||
break
|
||||
if i_episode % cfg.target_update == 0:
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward))
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('Complete training!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = DQNConfig()
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(1)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.n
|
||||
agent = DQN(state_dim,action_dim,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(SAVED_MODEL_PATH,RESULT_PATH)
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|
||||
del_empty_dir(SAVED_MODEL_PATH,RESULT_PATH)
|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-23 15:17:42
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-11 01:24:24
|
||||
LastEditTime: 2021-04-28 10:11:09
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -17,7 +17,6 @@ from PPO.model import Actor,Critic
|
||||
from PPO.memory import PPOMemory
|
||||
class PPO:
|
||||
def __init__(self, state_dim, action_dim,cfg):
|
||||
self.env = cfg.env
|
||||
self.gamma = cfg.gamma
|
||||
self.policy_clip = cfg.policy_clip
|
||||
self.n_epochs = cfg.n_epochs
|
||||
@@ -84,13 +83,13 @@ class PPO:
|
||||
self.critic_optimizer.step()
|
||||
self.memory.clear()
|
||||
def save(self,path):
|
||||
actor_checkpoint = os.path.join(path, self.env+'_actor.pt')
|
||||
critic_checkpoint= os.path.join(path, self.env+'_critic.pt')
|
||||
actor_checkpoint = os.path.join(path, 'ppo_actor.pt')
|
||||
critic_checkpoint= os.path.join(path, 'ppo_critic.pt')
|
||||
torch.save(self.actor.state_dict(), actor_checkpoint)
|
||||
torch.save(self.critic.state_dict(), critic_checkpoint)
|
||||
def load(self,path):
|
||||
actor_checkpoint = os.path.join(path, self.env+'_actor.pt')
|
||||
critic_checkpoint= os.path.join(path, self.env+'_critic.pt')
|
||||
actor_checkpoint = os.path.join(path, 'ppo_actor.pt')
|
||||
critic_checkpoint= os.path.join(path, 'ppo_critic.pt')
|
||||
self.actor.load_state_dict(torch.load(actor_checkpoint))
|
||||
self.critic.load_state_dict(torch.load(critic_checkpoint))
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-22 16:18:10
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-11 01:24:41
|
||||
LastEditTime: 2021-04-28 10:13:00
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -19,24 +19,16 @@ import torch
|
||||
import datetime
|
||||
from PPO.agent import PPO
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
from common.utils import save_results,make_dir
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(RESULT_PATH)
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
class PPOConfig:
|
||||
def __init__(self) -> None:
|
||||
self.env = 'CartPole-v0'
|
||||
self.algo = 'PPO'
|
||||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||||
self.batch_size = 5
|
||||
self.gamma=0.99
|
||||
self.n_epochs = 4
|
||||
@@ -50,12 +42,10 @@ class PPOConfig:
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
|
||||
|
||||
def train(cfg,env,agent):
|
||||
best_reward = env.reward_range[0]
|
||||
rewards= []
|
||||
ma_rewards = [] # moving average rewards
|
||||
avg_reward = 0
|
||||
running_steps = 0
|
||||
for i_episode in range(cfg.train_eps):
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
@@ -74,21 +64,18 @@ def train(cfg,env,agent):
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
avg_reward = np.mean(rewards[-100:])
|
||||
if avg_rewardself.actor_lr = 0.002
|
||||
self.critic_lr = 0.005 > best_reward:
|
||||
best_reward = avg_reward
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
print('Episode:{}/{}, Reward:{:.1f}, avg reward:{:.1f}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,avg_reward,done))
|
||||
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}")
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == '__main__':
|
||||
cfg = PPOConfig()
|
||||
cfg = PPOConfig()
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(1)
|
||||
env.seed(1) # Set seeds
|
||||
state_dim=env.observation_space.shape[0]
|
||||
action_dim=env.action_space.n
|
||||
agent = PPO(state_dim,action_dim,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
Before Width: | Height: | Size: 58 KiB |
|
After Width: | Height: | Size: 65 KiB |
|
After Width: | Height: | Size: 63 KiB |
@@ -1,14 +1,18 @@
|
||||
# Policy Gradient
|
||||
实现的是Policy Gradient最基本的REINFORCE方法
|
||||
## 使用说明
|
||||
直接运行```main.py```即可
|
||||
## 原理讲解
|
||||
|
||||
参考我的博客[Policy Gradient算法实战](https://blog.csdn.net/JohnJim0/article/details/110236851)
|
||||
|
||||
## 环境
|
||||
python 3.7.9、pytorch 1.6.0
|
||||
## 程序运行方法
|
||||
Policy-based方法是强化学习中与Value-based(比如Q-learning)相对的方法,其目的是对策略本身进行梯度下降,相关基础知识参考[Datawhale-Policy Gradient](https://datawhalechina.github.io/leedeeprl-notes/#/chapter4/chapter4)。
|
||||
其中REINFORCE是一个最基本的Policy Gradient方法,主要解决策略梯度无法直接计算的问题,具体原理参考[CSDN-REINFORCE和Reparameterization Trick](https://blog.csdn.net/JohnJim0/article/details/110230703)
|
||||
|
||||
## 伪代码
|
||||
|
||||
结合REINFORCE原理,其伪代码如下:
|
||||
|
||||

|
||||
|
||||
## 实现
|
||||
|
||||
|
||||
|
||||
## 参考
|
||||
|
||||
|
||||
|
After Width: | Height: | Size: 98 KiB |
@@ -22,7 +22,9 @@ python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0
|
||||
|
||||
## 使用说明
|
||||
|
||||
运行```main.py```或者```main.ipynb```,或者包含```task```名的文件(比如```task1.py```)
|
||||
运行带有```train```的py文件或ipynb文件进行训练,如果前面带有```task```如```task0_train.py```,表示对task0任务训练
|
||||
类似的带有```eval```即为测试。
|
||||
|
||||
## 算法进度
|
||||
|
||||
| 算法名称 | 相关论文材料 | 环境 | 备注 |
|
||||
@@ -45,11 +47,8 @@ python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0
|
||||
|
||||
|
||||
|
||||
|
||||
## Refs
|
||||
|
||||
|
||||
[RL-Adventure-2](https://github.com/higgsfield/RL-Adventure-2)
|
||||
|
||||
[RL-Adventure](https://github.com/higgsfield/RL-Adventure)
|
||||
|
||||
|
||||
@@ -19,10 +19,14 @@ Note that ```model.py```,```memory.py```,```plot.py``` shall be utilized in diff
|
||||
|
||||
## Runnig Environment
|
||||
|
||||
python 3.7.9、pytorch 1.6.0、gym 0.18.0
|
||||
python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0
|
||||
## Usage
|
||||
运行带有```train```的py文件或ipynb文件进行训练,如果前面带有```task```如```task0_train.py```,表示对task0任务训练
|
||||
类似的带有```eval```即为测试。
|
||||
|
||||
run ```main.py``` or ```main.ipynb```, or run files with ```task```(like ```task1.py```)
|
||||
run python scripts or jupyter notebook file with ```train``` to train the agent, if there is a ```task``` like ```task0_train.py```, it means to train with task 0.
|
||||
|
||||
similar to file with ```eval```, which means to evaluate the agent.
|
||||
|
||||
## Schedule
|
||||
|
||||
@@ -51,5 +55,3 @@ run ```main.py``` or ```main.ipynb```, or run files with ```task```(like ```task
|
||||
[RL-Adventure-2](https://github.com/higgsfield/RL-Adventure-2)
|
||||
|
||||
[RL-Adventure](https://github.com/higgsfield/RL-Adventure)
|
||||
|
||||
|
||||
|
||||
108
codes/RandomPolicy/main.py
Normal file
@@ -0,0 +1,108 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-04-21 11:07:57
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2021-04-21 11:15:00
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import torch
|
||||
import gym
|
||||
import numpy as np
|
||||
import datetime
|
||||
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results,make_dir
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
|
||||
class TD3Config:
|
||||
def __init__(self) -> None:
|
||||
self.algo = 'TD3'
|
||||
self.env = 'HalfCheetah-v2'
|
||||
self.seed = 0
|
||||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||||
self.eval_freq = 5e3 # How often (time steps) we evaluate
|
||||
# self.train_eps = 800
|
||||
self.max_timestep = 4000000 # Max time steps to run environment
|
||||
|
||||
# Runs policy for X episodes and returns average reward
|
||||
# A fixed seed is used for the eval environment
|
||||
def eval(env_name,seed, eval_episodes=10):
|
||||
eval_env = gym.make(env_name)
|
||||
eval_env.seed(seed + 100)
|
||||
avg_reward = 0.
|
||||
for _ in range(eval_episodes):
|
||||
state, done = eval_env.reset(), False
|
||||
while not done:
|
||||
# eval_env.render()
|
||||
action = eval_env.action_space.sample()
|
||||
state, reward, done, _ = eval_env.step(action)
|
||||
avg_reward += reward
|
||||
avg_reward /= eval_episodes
|
||||
print("---------------------------------------")
|
||||
print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}")
|
||||
print("---------------------------------------")
|
||||
return avg_reward
|
||||
|
||||
def train(cfg,env):
|
||||
# Evaluate untrained policy
|
||||
evaluations = [eval(cfg.env, cfg.seed)]
|
||||
state, done = env.reset(), False
|
||||
ep_reward = 0
|
||||
ep_timesteps = 0
|
||||
episode_num = 0
|
||||
rewards = []
|
||||
ma_rewards = [] # moveing average reward
|
||||
for t in range(int(cfg.max_timestep)):
|
||||
ep_timesteps += 1
|
||||
# Select action randomly
|
||||
action = env.action_space.sample()
|
||||
# Perform action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
if done:
|
||||
# +1 to account for 0 indexing. +0 on ep_timesteps since it will increment +1 even if done=True
|
||||
print(f"Episode:{episode_num+1}, Episode T:{ep_timesteps}, Reward:{ep_reward:.3f}")
|
||||
# Reset environment
|
||||
state, done = env.reset(), False
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
ep_reward = 0
|
||||
ep_timesteps = 0
|
||||
episode_num += 1
|
||||
# Evaluate episode
|
||||
if (t + 1) % cfg.eval_freq == 0:
|
||||
evaluations.append(eval(cfg.env, cfg.seed))
|
||||
return rewards, ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = TD3Config()
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(cfg.seed) # Set seeds
|
||||
torch.manual_seed(cfg.seed)
|
||||
np.random.seed(cfg.seed)
|
||||
rewards,ma_rewards = train(cfg,env)
|
||||
make_dir(cfg.result_path)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
# cfg.result_path = './TD3/results/HalfCheetah-v2/20210416-130341/'
|
||||
# agent.load(cfg.result_path)
|
||||
# eval(cfg.env,agent, cfg.seed)
|
||||
|
||||
|
||||
|
After Width: | Height: | Size: 58 KiB |
@@ -92,14 +92,10 @@ class TD3(object):
|
||||
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=3e-4)
|
||||
self.memory = ReplayBuffer(state_dim, action_dim)
|
||||
|
||||
|
||||
|
||||
|
||||
def choose_action(self, state):
|
||||
state = torch.FloatTensor(state.reshape(1, -1)).to(self.device)
|
||||
return self.actor(state).cpu().data.numpy().flatten()
|
||||
|
||||
|
||||
def update(self):
|
||||
self.total_it += 1
|
||||
|
||||
@@ -167,4 +163,4 @@ class TD3(object):
|
||||
self.actor.load_state_dict(torch.load(path + "td3_actor"))
|
||||
self.actor_optimizer.load_state_dict(torch.load(path + "td3_actor_optimizer"))
|
||||
self.actor_target = copy.deepcopy(self.actor)
|
||||
|
||||
|
||||
|
||||
|
Before Width: | Height: | Size: 42 KiB |
|
After Width: | Height: | Size: 44 KiB |
|
After Width: | Height: | Size: 51 KiB |
BIN
codes/TD3/results/HalfCheetah-v2/20210421-004751/td3_actor
Normal file
BIN
codes/TD3/results/HalfCheetah-v2/20210421-004751/td3_critic
Normal file
BIN
codes/TD3/results/Pendulum-v0/20210428-092059/models/td3_actor
Normal file
BIN
codes/TD3/results/Pendulum-v0/20210428-092059/models/td3_critic
Normal file
|
After Width: | Height: | Size: 56 KiB |
|
After Width: | Height: | Size: 70 KiB |
89
codes/TD3/task0_eval.py
Normal file
@@ -0,0 +1,89 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-04-23 20:36:23
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2021-04-23 20:37:22
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import torch
|
||||
import gym
|
||||
import numpy as np
|
||||
import datetime
|
||||
|
||||
|
||||
from TD3.agent import TD3
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results,make_dir
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
class TD3Config:
|
||||
def __init__(self) -> None:
|
||||
self.algo = 'TD3 and Random'
|
||||
self.env = 'HalfCheetah-v2'
|
||||
self.seed = 0
|
||||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||||
self.start_timestep = 25e3 # Time steps initial random policy is used
|
||||
self.eval_freq = 5e3 # How often (time steps) we evaluate
|
||||
self.max_timestep = 200000 # Max time steps to run environment
|
||||
self.expl_noise = 0.1 # Std of Gaussian exploration noise
|
||||
self.batch_size = 256 # Batch size for both actor and critic
|
||||
self.gamma = 0.99 # gamma factor
|
||||
self.lr = 0.0005 # Target network update rate
|
||||
self.policy_noise = 0.2 # Noise added to target policy during critic update
|
||||
self.noise_clip = 0.5 # Range to clip target policy noise
|
||||
self.policy_freq = 2 # Frequency of delayed policy updates
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Runs policy for X episodes and returns average reward
|
||||
# A fixed seed is used for the eval environment
|
||||
def eval(env_name,agent, seed, eval_episodes=50):
|
||||
eval_env = gym.make(env_name)
|
||||
eval_env.seed(seed + 100)
|
||||
rewards,ma_rewards =[],[]
|
||||
for i_episode in range(eval_episodes):
|
||||
ep_reward = 0
|
||||
state, done = eval_env.reset(), False
|
||||
while not done:
|
||||
eval_env.render()
|
||||
action = agent.choose_action(np.array(state))
|
||||
state, reward, done, _ = eval_env.step(action)
|
||||
ep_reward += reward
|
||||
print(f"Episode:{i_episode+1}, Reward:{ep_reward:.3f}")
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = TD3Config()
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(cfg.seed) # Set seeds
|
||||
torch.manual_seed(cfg.seed)
|
||||
np.random.seed(cfg.seed)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.shape[0]
|
||||
max_action = float(env.action_space.high[0])
|
||||
td3= TD3(state_dim,action_dim,max_action,cfg)
|
||||
cfg.model_path = './TD3/results/HalfCheetah-v2/20210416-130341/models/'
|
||||
td3.load(cfg.model_path)
|
||||
td3_rewards,td3_ma_rewards = eval(cfg.env,td3,cfg.seed)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
save_results(td3_rewards,td3_ma_rewards,tag='eval',path=cfg.result_path)
|
||||
plot_rewards({'td3_rewards':td3_rewards,'td3_ma_rewards':td3_ma_rewards,},tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
# cfg.result_path = './TD3/results/HalfCheetah-v2/20210416-130341/'
|
||||
# agent.load(cfg.result_path)
|
||||
# eval(cfg.env,agent, cfg.seed)
|
||||
@@ -21,11 +21,12 @@ class TD3Config:
|
||||
self.algo = 'TD3'
|
||||
self.env = 'HalfCheetah-v2'
|
||||
self.seed = 0
|
||||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/' # path to save results
|
||||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||||
self.start_timestep = 25e3 # Time steps initial random policy is used
|
||||
self.eval_freq = 5e3 # How often (time steps) we evaluate
|
||||
# self.train_eps = 800
|
||||
self.max_timestep = 1600000 # Max time steps to run environment
|
||||
self.max_timestep = 4000000 # Max time steps to run environment
|
||||
self.expl_noise = 0.1 # Std of Gaussian exploration noise
|
||||
self.batch_size = 256 # Batch size for both actor and critic
|
||||
self.gamma = 0.99 # gamma factor
|
||||
@@ -161,9 +162,12 @@ if __name__ == "__main__":
|
||||
max_action = float(env.action_space.high[0])
|
||||
agent = TD3(state_dim,action_dim,max_action,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(cfg.result_path)
|
||||
agent.save(path=cfg.result_path)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
# cfg.result_path = './TD3/results/HalfCheetah-v2/20210416-130341/'
|
||||
# agent.load(cfg.result_path)
|
||||
# eval(cfg.env,agent, cfg.seed)
|
||||
|
||||
|
||||
83
codes/TD3/task1_eval.py
Normal file
@@ -0,0 +1,83 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-04-23 20:36:23
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2021-04-28 10:14:33
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import torch
|
||||
import gym
|
||||
import numpy as np
|
||||
import datetime
|
||||
|
||||
|
||||
from TD3.agent import TD3
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results,make_dir
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
class TD3Config:
|
||||
def __init__(self) -> None:
|
||||
self.algo = 'TD3'
|
||||
self.env = 'Pendulum-v0'
|
||||
self.seed = 0
|
||||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||||
self.batch_size = 256 # Batch size for both actor and critic
|
||||
self.gamma = 0.99 # gamma factor
|
||||
self.lr = 0.0005 # Target network update rate
|
||||
self.policy_noise = 0.2 # Noise added to target policy during critic update
|
||||
self.noise_clip = 0.5 # Range to clip target policy noise
|
||||
self.policy_freq = 2 # Frequency of delayed policy updates
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Runs policy for X episodes and returns average reward
|
||||
# A fixed seed is used for the eval environment
|
||||
def eval(env_name,agent, seed, eval_episodes=50):
|
||||
eval_env = gym.make(env_name)
|
||||
eval_env.seed(seed + 100)
|
||||
rewards,ma_rewards =[],[]
|
||||
for i_episode in range(eval_episodes):
|
||||
ep_reward = 0
|
||||
state, done = eval_env.reset(), False
|
||||
while not done:
|
||||
# eval_env.render()
|
||||
action = agent.choose_action(np.array(state))
|
||||
state, reward, done, _ = eval_env.step(action)
|
||||
ep_reward += reward
|
||||
print(f"Episode:{i_episode+1}, Reward:{ep_reward:.3f}")
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = TD3Config()
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(cfg.seed) # Set seeds
|
||||
torch.manual_seed(cfg.seed)
|
||||
np.random.seed(cfg.seed)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.shape[0]
|
||||
max_action = float(env.action_space.high[0])
|
||||
td3= TD3(state_dim,action_dim,max_action,cfg)
|
||||
cfg.model_path = './TD3/results/Pendulum-v0/20210428-092059/models/'
|
||||
cfg.result_path = './TD3/results/Pendulum-v0/20210428-092059/results/'
|
||||
td3.load(cfg.model_path)
|
||||
rewards,ma_rewards = eval(cfg.env,td3,cfg.seed)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
112
codes/TD3/task1_train.py
Normal file
@@ -0,0 +1,112 @@
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import torch
|
||||
import gym
|
||||
import numpy as np
|
||||
import datetime
|
||||
|
||||
|
||||
from TD3.agent import TD3
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results,make_dir
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
|
||||
class TD3Config:
|
||||
def __init__(self) -> None:
|
||||
self.algo = 'TD3'
|
||||
self.env = 'Pendulum-v0'
|
||||
self.seed = 0
|
||||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
|
||||
self.start_timestep = 25e3 # Time steps initial random policy is used
|
||||
self.start_ep = 50 # Episodes initial random policy is used
|
||||
self.eval_freq = 10 # How often (episodes) we evaluate
|
||||
self.train_eps = 600
|
||||
self.max_timestep = 100000 # Max time steps to run environment
|
||||
self.expl_noise = 0.1 # Std of Gaussian exploration noise
|
||||
self.batch_size = 256 # Batch size for both actor and critic
|
||||
self.gamma = 0.9 # gamma factor
|
||||
self.lr = 0.0005 # Target network update rate
|
||||
self.policy_noise = 0.2 # Noise added to target policy during critic update
|
||||
self.noise_clip = 0.3 # Range to clip target policy noise
|
||||
self.policy_freq = 2 # Frequency of delayed policy updates
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Runs policy for X episodes and returns average reward
|
||||
# A fixed seed is used for the eval environment
|
||||
def eval(env,agent, seed, eval_episodes=10):
|
||||
eval_env = gym.make(env)
|
||||
eval_env.seed(seed + 100)
|
||||
avg_reward = 0.
|
||||
for _ in range(eval_episodes):
|
||||
state, done = eval_env.reset(), False
|
||||
while not done:
|
||||
# eval_env.render()
|
||||
action = agent.choose_action(np.array(state))
|
||||
state, reward, done, _ = eval_env.step(action)
|
||||
avg_reward += reward
|
||||
avg_reward /= eval_episodes
|
||||
print("---------------------------------------")
|
||||
print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}")
|
||||
print("---------------------------------------")
|
||||
return avg_reward
|
||||
|
||||
def train(cfg,env,agent):
|
||||
rewards = []
|
||||
ma_rewards = [] # moveing average reward
|
||||
for i_ep in range(int(cfg.train_eps)):
|
||||
ep_reward = 0
|
||||
ep_timesteps = 0
|
||||
state, done = env.reset(), False
|
||||
while not done:
|
||||
ep_timesteps += 1
|
||||
# Select action randomly or according to policy
|
||||
if i_ep < cfg.start_ep:
|
||||
action = env.action_space.sample()
|
||||
else:
|
||||
action = (
|
||||
agent.choose_action(np.array(state))
|
||||
+ np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
|
||||
).clip(-max_action, max_action)
|
||||
# Perform action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
done_bool = float(done) if ep_timesteps < env._max_episode_steps else 0
|
||||
# Store data in replay buffer
|
||||
agent.memory.push(state, action, next_state, reward, done_bool)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
# Train agent after collecting sufficient data
|
||||
if i_ep+1 >= cfg.start_ep:
|
||||
agent.update()
|
||||
print(f"Episode:{i_ep+1}/{cfg.train_eps}, Step:{ep_timesteps}, Reward:{ep_reward:.3f}")
|
||||
rewards.append(ep_reward)
|
||||
# 计算滑动窗口的reward
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
return rewards, ma_rewards
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = TD3Config()
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(cfg.seed) # Set seeds
|
||||
torch.manual_seed(cfg.seed)
|
||||
np.random.seed(cfg.seed)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.shape[0]
|
||||
max_action = float(env.action_space.high[0])
|
||||
agent = TD3(state_dim,action_dim,max_action,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-10-07 20:57:11
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-08 21:45:09
|
||||
LastEditTime: 2021-04-28 10:13:21
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -16,12 +16,21 @@ def plot_rewards(rewards,ma_rewards,tag="train",env='CartPole-v0',algo = "DQN",s
|
||||
plt.title("average learning curve of {} for {}".format(algo,env))
|
||||
plt.xlabel('epsiodes')
|
||||
plt.plot(rewards,label='rewards')
|
||||
plt.plot(ma_rewards,label='moving average rewards')
|
||||
plt.plot(ma_rewards,label='ma rewards')
|
||||
plt.legend()
|
||||
if save:
|
||||
plt.savefig(path+"rewards_curve_{}".format(tag))
|
||||
plt.show()
|
||||
|
||||
# def plot_rewards(dic,tag="train",env='CartPole-v0',algo = "DQN",save=True,path='./'):
|
||||
# sns.set()
|
||||
# plt.title("average learning curve of {} for {}".format(algo,env))
|
||||
# plt.xlabel('epsiodes')
|
||||
# for key, value in dic.items():
|
||||
# plt.plot(value,label=key)
|
||||
# plt.legend()
|
||||
# if save:
|
||||
# plt.savefig(path+algo+"_rewards_curve_{}".format(tag))
|
||||
# plt.show()
|
||||
def plot_losses(losses,algo = "DQN",save=True,path='./'):
|
||||
sns.set()
|
||||
plt.title("loss curve of {}".format(algo))
|
||||
|
||||