Files
easy-rl/codes/TD3/task0_train.py
johnjim0816 ed7b60fd5b update
2021-04-28 22:11:22 +08:00

174 lines
6.0 KiB
Python

import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import torch
import gym
import numpy as np
import datetime
from TD3.agent import TD3
from common.plot import plot_rewards
from common.utils import save_results,make_dir
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class TD3Config:
def __init__(self) -> None:
self.algo = 'TD3'
self.env = 'HalfCheetah-v2'
self.seed = 0
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models
self.start_timestep = 25e3 # Time steps initial random policy is used
self.eval_freq = 5e3 # How often (time steps) we evaluate
# self.train_eps = 800
self.max_timestep = 4000000 # Max time steps to run environment
self.expl_noise = 0.1 # Std of Gaussian exploration noise
self.batch_size = 256 # Batch size for both actor and critic
self.gamma = 0.99 # gamma factor
self.lr = 0.0005 # Target network update rate
self.policy_noise = 0.2 # Noise added to target policy during critic update
self.noise_clip = 0.5 # Range to clip target policy noise
self.policy_freq = 2 # Frequency of delayed policy updates
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
def eval(env,agent, seed, eval_episodes=10):
eval_env = gym.make(env)
eval_env.seed(seed + 100)
avg_reward = 0.
for _ in range(eval_episodes):
state, done = eval_env.reset(), False
while not done:
# eval_env.render()
action = agent.choose_action(np.array(state))
state, reward, done, _ = eval_env.step(action)
avg_reward += reward
avg_reward /= eval_episodes
print("---------------------------------------")
print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}")
print("---------------------------------------")
return avg_reward
def train(cfg,env,agent):
# Evaluate untrained policy
evaluations = [eval(cfg.env,agent, cfg.seed)]
state, done = env.reset(), False
ep_reward = 0
ep_timesteps = 0
episode_num = 0
rewards = []
ma_rewards = [] # moveing average reward
for t in range(int(cfg.max_timestep)):
ep_timesteps += 1
# Select action randomly or according to policy
if t < cfg.start_timestep:
action = env.action_space.sample()
else:
action = (
agent.choose_action(np.array(state))
+ np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
).clip(-max_action, max_action)
# Perform action
next_state, reward, done, _ = env.step(action)
done_bool = float(done) if ep_timesteps < env._max_episode_steps else 0
# Store data in replay buffer
agent.memory.push(state, action, next_state, reward, done_bool)
state = next_state
ep_reward += reward
# Train agent after collecting sufficient data
if t >= cfg.start_timestep:
agent.update()
if done:
# +1 to account for 0 indexing. +0 on ep_timesteps since it will increment +1 even if done=True
print(f"Episode:{episode_num+1}, Episode T:{ep_timesteps}, Reward:{ep_reward:.3f}")
# Reset environment
state, done = env.reset(), False
rewards.append(ep_reward)
# 计算滑动窗口的reward
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
ep_reward = 0
ep_timesteps = 0
episode_num += 1
# Evaluate episode
if (t + 1) % cfg.eval_freq == 0:
evaluations.append(eval(cfg.env,agent, cfg.seed))
return rewards, ma_rewards
# def train(cfg,env,agent):
# evaluations = [eval(cfg.env,agent,cfg.seed)]
# ep_reward = 0
# tot_timestep = 0
# rewards = []
# ma_rewards = [] # moveing average reward
# for i_ep in range(int(cfg.train_eps)):
# state, done = env.reset(), False
# ep_reward = 0
# ep_timestep = 0
# while not done:
# ep_timestep += 1
# tot_timestep +=1
# # Select action randomly or according to policy
# if tot_timestep < cfg.start_timestep:
# action = env.action_space.sample()
# else:
# action = (
# agent.choose_action(np.array(state))
# + np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
# ).clip(-max_action, max_action)
# # action = (
# # agent.choose_action(np.array(state))
# # + np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
# # ).clip(-max_action, max_action)
# # Perform action
# next_state, reward, done, _ = env.step(action)
# done_bool = float(done) if ep_timestep < env._max_episode_steps else 0
# # Store data in replay buffer
# agent.memory.push(state, action, next_state, reward, done_bool)
# state = next_state
# ep_reward += reward
# # Train agent after collecting sufficient data
# if tot_timestep >= cfg.start_timestep:
# agent.update()
# print(f"Episode:{i_ep}/{cfg.train_eps}, Episode Timestep:{ep_timestep}, Reward:{ep_reward:.3f}")
# rewards.append(ep_reward)
# # 计算滑动窗口的reward
# if ma_rewards:
# ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
# else:
# ma_rewards.append(ep_reward)
# # Evaluate episode
# if (i_ep+1) % cfg.eval_freq == 0:
# evaluations.append(eval(cfg.env,agent, cfg.seed))
# return rewards,ma_rewards
if __name__ == "__main__":
cfg = TD3Config()
env = gym.make(cfg.env)
env.seed(cfg.seed) # Set seeds
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
agent = TD3(state_dim,action_dim,max_action,cfg)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(cfg.result_path,cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
# cfg.result_path = './TD3/results/HalfCheetah-v2/20210416-130341/'
# agent.load(cfg.result_path)
# eval(cfg.env,agent, cfg.seed)