88 lines
3.2 KiB
Python
88 lines
3.2 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
@Author: John
|
||
@Email: johnjim0816@gmail.com
|
||
@Date: 2020-06-12 00:48:57
|
||
@LastEditor: John
|
||
LastEditTime: 2021-04-13 18:49:44
|
||
@Discription:
|
||
@Environment: python 3.7.7
|
||
'''
|
||
import sys,os
|
||
curr_path = os.path.dirname(__file__)
|
||
parent_path=os.path.dirname(curr_path)
|
||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||
|
||
import gym
|
||
import torch
|
||
import datetime
|
||
from DQN.agent import DQN
|
||
from common.plot import plot_rewards
|
||
from common.utils import save_results,make_dir,del_empty_dir
|
||
|
||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
|
||
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
|
||
make_dir(curr_path+"/saved_model/",curr_path+"/results/")
|
||
del_empty_dir(curr_path+"/saved_model/",curr_path+"/results/")
|
||
|
||
class DQNConfig:
|
||
def __init__(self):
|
||
self.env = 'LunarLander-v2'
|
||
self.algo = "DQN" # name of algo
|
||
self.gamma = 0.95
|
||
self.epsilon_start = 1 # e-greedy策略的初始epsilon
|
||
self.epsilon_end = 0.01
|
||
self.epsilon_decay = 500
|
||
self.lr = 0.0001 # learning rate
|
||
self.memory_capacity = 1000000 # Replay Memory容量
|
||
self.batch_size = 64
|
||
self.train_eps = 300 # 训练的episode数目
|
||
self.train_steps = 1000
|
||
self.target_update = 2 # target net的更新频率
|
||
self.eval_eps = 20 # 测试的episode数目
|
||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||
self.hidden_dim = 256 # 神经网络隐藏层维度
|
||
|
||
def train(cfg,env,agent):
|
||
print('Start to train !')
|
||
rewards = []
|
||
ma_rewards = [] # moveing average reward
|
||
for i_episode in range(cfg.train_eps):
|
||
state = env.reset()
|
||
ep_reward = 0
|
||
for i_step in range(cfg.train_steps):
|
||
action = agent.choose_action(state)
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
agent.memory.push(state, action, reward, next_state, done)
|
||
state = next_state
|
||
agent.update()
|
||
if done:
|
||
break
|
||
if i_episode % cfg.target_update == 0:
|
||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||
print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward))
|
||
rewards.append(ep_reward)
|
||
# 计算滑动窗口的reward
|
||
if ma_rewards:
|
||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
print('Complete training!')
|
||
return rewards,ma_rewards
|
||
|
||
if __name__ == "__main__":
|
||
cfg = DQNConfig()
|
||
env = gym.make(cfg.env)
|
||
env.seed(1)
|
||
state_dim = env.observation_space.shape[0]
|
||
action_dim = env.action_space.n
|
||
agent = DQN(state_dim,action_dim,cfg)
|
||
rewards,ma_rewards = train(cfg,env,agent)
|
||
make_dir(SAVED_MODEL_PATH,RESULT_PATH)
|
||
agent.save(path=SAVED_MODEL_PATH)
|
||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|
||
del_empty_dir(SAVED_MODEL_PATH,RESULT_PATH) |