add env_info

This commit is contained in:
JohnJim0816
2021-03-12 17:08:30 +08:00
parent ac05313a53
commit b6c8ec4bea
2 changed files with 72 additions and 0 deletions

59
codes/README.md Normal file
View File

@@ -0,0 +1,59 @@
## 写在前面
本项目用于学习RL基础算法尽量做到
* 注释详细
* 结构清晰
代码结构清晰,主要分为以下几个脚本:
* ```env.py``` 用于构建强化学习环境也可以重新normalize环境比如给action加noise
* ```model.py``` 强化学习算法的基本模型比如神经网络actorcritic等
* ```memory.py``` 保存Replay Buffer用于off-policy
* ```agent.py``` RL核心算法比如dqn等主要包含update和select_action两个方法
* ```main.py``` 运行主函数
* ```params.py``` 保存各种参数
* ```plot.py``` 利用matplotlib或seaborn绘制rewards图包括滑动平均的reward结果保存在result文件夹中
## 运行环境
python 3.7.9
pytorch 1.6.0
tensorboard 2.3.0
torchvision 0.7.0
gym 0.17.3
## 使用说明
本仓库使用到的环境信息请跳转[环境说明](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/env_info.md), 在各算法目录下也有相应说明(比如如何运行程序等)
## 算法进度
| 算法名称 | 相关论文材料 | 备注 | 进度 |
| :----------------------: | :---------------------------------------------------------: | :--------------------------------: | :--: |
| On-Policy First-Visit MC | | | OK |
| Q-Learning | | | OK |
| SARSA | | | OK |
| DQN | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | | OK |
| DQN-cnn | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | 与DQN相比使用了CNN而不是全链接网络 | OK |
| DoubleDQN | | | OK |
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
| PolicyGradient | | | OK |
| A2C | | | OK |
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | | OK |
| TD3 | [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) | | |
| | | | |
## Refs
[RL-Adventure-2](https://github.com/higgsfield/RL-Adventure-2)
[RL-Adventure](https://github.com/higgsfield/RL-Adventure)

13
codes/env_info.md Normal file
View File

@@ -0,0 +1,13 @@
## 环境说明
### [CartPole v0](https://github.com/openai/gym/wiki/CartPole-v0)
<img src="assets/image-20200820174307301.png" alt="image-20200820174307301" style="zoom:50%;" />
通过向左或向右推车能够实现平衡所以动作空间由两个动作组成。每进行一个step就会给一个reward如果无法保持平衡那么done等于true本次episode失败。理想状态下每个episode至少能进行200个step也就是说每个episode的reward总和至少为200step数目至少为200
### [Pendulum-v0](https://github.com/openai/gym/wiki/Pendulum-v0)
<img src="assets/image-20200820174814084.png" alt="image-20200820174814084" style="zoom:50%;" />
钟摆以随机位置开始,目标是将其摆动,使其保持向上直立。动作空间是连续的,值的区间为[-2,2]。每个step给的reward最低为-16.27最高为0。目前最好的成绩是100个episode的reward之和为-123.11 ± 6.86。