update README
This commit is contained in:
@@ -28,6 +28,22 @@
|
||||
| [第十一章 模仿学习](https://datawhalechina.github.io/leedeeprl-notes/#/chapter11/chapter11) | [第十一章 习题](https://datawhalechina.github.io/leedeeprl-notes/#/chapter11/chapter11_questions&keywords) | |
|
||||
| [第十二章 深度确定性策略梯度 (DDPG) 算法](https://datawhalechina.github.io/leedeeprl-notes/#/chapter12/chapter12) | [第十二章 习题](https://datawhalechina.github.io/leedeeprl-notes/#/chapter12/chapter12_questions&keywords) | [项目三 使用 Policy-Based 方法实现 Pendulum-v0](https://datawhalechina.github.io/leedeeprl-notes/#/chapter12/project3) |
|
||||
| [第十三章 AlphaStar 论文解读](https://datawhalechina.github.io/leedeeprl-notes/#/chapter13/chapter13) |||
|
||||
|
||||
## 算法代码实现一览
|
||||
|
||||
| 算法名称 | 相关论文材料 | 备注 | 进度 |
|
||||
| :----------------------: | :---------------------------------------------------------: | :--------------------------------: | :--: |
|
||||
| On-Policy First-Visit MC | | 蒙特卡洛算法 | OK |
|
||||
| Q-Learning | | | OK |
|
||||
| SARSA | | | OK |
|
||||
| DQN | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | | OK |
|
||||
| DQN-cnn | [DQN-paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | 与DQN相比使用了CNN而不是全链接网络 | OK |
|
||||
| DoubleDQN | | | OK |
|
||||
| Hierarchical DQN | [Hierarchical DQN](https://arxiv.org/abs/1604.06057) | | |
|
||||
| PolicyGradient | | | OK |
|
||||
| A2C | | | OK |
|
||||
| DDPG | [DDPG Paper](https://arxiv.org/abs/1509.02971) | | OK |
|
||||
| TD3 | [Twin Dueling DDPG Paper](https://arxiv.org/abs/1802.09477) | | |
|
||||
## 贡献者
|
||||
<table border="0">
|
||||
<tbody>
|
||||
|
||||
Reference in New Issue
Block a user