This commit is contained in:
JohnJim0816
2020-11-09 21:24:16 +08:00
parent 70bfdccf2f
commit 8ac41fb16b
9 changed files with 490 additions and 0 deletions

3
codes/A2C/.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,3 @@
{
"python.pythonPath": "/Users/jj/anaconda3/envs/py37/bin/python"
}

0
codes/A2C/README.md Normal file
View File

33
codes/A2C/agent.py Normal file
View File

@@ -0,0 +1,33 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-03 20:47:09
LastEditor: John
LastEditTime: 2020-11-08 22:16:29
Discription:
Environment:
'''
from model import ActorCritic
import torch.optim as optim
class A2C:
def __init__(self,n_states, n_actions, hidden_dim=256,device="cpu",lr = 3e-4):
self.device = device
self.gamma = 0.99
self.model = ActorCritic(n_states, n_actions, hidden_dim=hidden_dim).to(device)
self.optimizer = optim.Adam(self.model.parameters(),lr=lr)
def choose_action(self, state):
dist, value = self.model(state)
action = dist.sample()
return action
def compute_returns(self,next_value, rewards, masks):
R = next_value
returns = []
for step in reversed(range(len(rewards))):
R = rewards[step] + self.gamma * R * masks[step]
returns.insert(0, R)
return returns
def update(self):
pass

View File

View File

@@ -0,0 +1,153 @@
#This code is from openai baseline
#https://github.com/openai/baselines/tree/master/baselines/common/vec_env
import numpy as np
from multiprocessing import Process, Pipe
def worker(remote, parent_remote, env_fn_wrapper):
parent_remote.close()
env = env_fn_wrapper.x()
while True:
cmd, data = remote.recv()
if cmd == 'step':
ob, reward, done, info = env.step(data)
if done:
ob = env.reset()
remote.send((ob, reward, done, info))
elif cmd == 'reset':
ob = env.reset()
remote.send(ob)
elif cmd == 'reset_task':
ob = env.reset_task()
remote.send(ob)
elif cmd == 'close':
remote.close()
break
elif cmd == 'get_spaces':
remote.send((env.observation_space, env.action_space))
else:
raise NotImplementedError
class VecEnv(object):
"""
An abstract asynchronous, vectorized environment.
"""
def __init__(self, num_envs, observation_space, action_space):
self.num_envs = num_envs
self.observation_space = observation_space
self.action_space = action_space
def reset(self):
"""
Reset all the environments and return an array of
observations, or a tuple of observation arrays.
If step_async is still doing work, that work will
be cancelled and step_wait() should not be called
until step_async() is invoked again.
"""
pass
def step_async(self, actions):
"""
Tell all the environments to start taking a step
with the given actions.
Call step_wait() to get the results of the step.
You should not call this if a step_async run is
already pending.
"""
pass
def step_wait(self):
"""
Wait for the step taken with step_async().
Returns (obs, rews, dones, infos):
- obs: an array of observations, or a tuple of
arrays of observations.
- rews: an array of rewards
- dones: an array of "episode done" booleans
- infos: a sequence of info objects
"""
pass
def close(self):
"""
Clean up the environments' resources.
"""
pass
def step(self, actions):
self.step_async(actions)
return self.step_wait()
class CloudpickleWrapper(object):
"""
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
"""
def __init__(self, x):
self.x = x
def __getstate__(self):
import cloudpickle
return cloudpickle.dumps(self.x)
def __setstate__(self, ob):
import pickle
self.x = pickle.loads(ob)
class SubprocVecEnv(VecEnv):
def __init__(self, env_fns, spaces=None):
"""
envs: list of gym environments to run in subprocesses
"""
self.waiting = False
self.closed = False
nenvs = len(env_fns)
self.nenvs = nenvs
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
for p in self.ps:
p.daemon = True # if the main process crashes, we should not cause things to hang
p.start()
for remote in self.work_remotes:
remote.close()
self.remotes[0].send(('get_spaces', None))
observation_space, action_space = self.remotes[0].recv()
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
def step_async(self, actions):
for remote, action in zip(self.remotes, actions):
remote.send(('step', action))
self.waiting = True
def step_wait(self):
results = [remote.recv() for remote in self.remotes]
self.waiting = False
obs, rews, dones, infos = zip(*results)
return np.stack(obs), np.stack(rews), np.stack(dones), infos
def reset(self):
for remote in self.remotes:
remote.send(('reset', None))
return np.stack([remote.recv() for remote in self.remotes])
def reset_task(self):
for remote in self.remotes:
remote.send(('reset_task', None))
return np.stack([remote.recv() for remote in self.remotes])
def close(self):
if self.closed:
return
if self.waiting:
for remote in self.remotes:
remote.recv()
for remote in self.remotes:
remote.send(('close', None))
for p in self.ps:
p.join()
self.closed = True
def __len__(self):
return self.nenvs

48
codes/A2C/env.py Normal file
View File

@@ -0,0 +1,48 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-10-30 15:39:37
LastEditor: John
LastEditTime: 2020-11-03 20:52:07
Discription:
Environment:
'''
import gym
from common.multiprocessing_env import SubprocVecEnv
# num_envs = 16
# env_name = "Pendulum-v0"
def make_envs(num_envs=16,env_name="Pendulum-v0"):
''' 创建多个子环境
'''
num_envs = 16
env_name = "CartPole-v0"
def make_env():
def _thunk():
env = gym.make(env_name)
return env
return _thunk
envs = [make_env() for i in range(num_envs)]
envs = SubprocVecEnv(envs)
return envs
# if __name__ == "__main__":
# num_envs = 16
# env_name = "CartPole-v0"
# def make_env():
# def _thunk():
# env = gym.make(env_name)
# return env
# return _thunk
# envs = [make_env() for i in range(num_envs)]
# envs = SubprocVecEnv(envs)
if __name__ == "__main__":
envs = make_envs(num_envs=16,env_name="CartPole-v0")

186
codes/A2C/main.py Normal file
View File

@@ -0,0 +1,186 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 20:58:21
@LastEditor: John
LastEditTime: 2020-11-08 22:19:56
@Discription:
@Environment: python 3.7.9
'''
import torch
import gym
import os
import numpy as np
import argparse
from torch.utils.tensorboard import SummaryWriter
from agent import A2C
from env import make_envs
from utils import SEQUENCE, SAVED_MODEL_PATH, RESULT_PATH
from utils import save_model,save_results
def get_args():
'''模型建立好之后只需要在这里调参
'''
parser = argparse.ArgumentParser()
parser.add_argument("--train", default=1, type=int) # 1 表示训练0表示只进行eval
parser.add_argument("--gamma", default=0.99,
type=float) # reward 折扣因子
parser.add_argument("--lr", default=3e-4, type=float) # critic学习率
parser.add_argument("--actor_lr", default=1e-4, type=float)
parser.add_argument("--memory_capacity", default=10000,
type=int, help="capacity of Replay Memory")
parser.add_argument("--batch_size", default=128, type=int,
help="batch size of memory sampling")
parser.add_argument("--train_eps", default=4000, type=int)
parser.add_argument("--train_steps", default=5, type=int)
parser.add_argument("--eval_eps", default=200, type=int) # 训练的最大episode数目
parser.add_argument("--eval_steps", default=200,
type=int) # 训练每个episode的长度
parser.add_argument("--target_update", default=4, type=int,
help="when(every default 10 eisodes) to update target net ")
config = parser.parse_args()
return config
def test_env(agent,device='cpu'):
env = gym.make("CartPole-v0")
state = env.reset()
ep_reward=0
for _ in range(200):
state = torch.FloatTensor(state).unsqueeze(0).to(device)
dist, value = agent.model(state)
action = dist.sample()
next_state, reward, done, _ = env.step(action.cpu().numpy()[0])
state = next_state
ep_reward += reward
if done:
break
return ep_reward
def train(cfg):
print('Start to train ! \n')
envs = make_envs(num_envs=16,env_name="CartPole-v0")
n_states = envs.observation_space.shape[0]
n_actions = envs.action_space.n
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
agent = A2C(n_states, n_actions, hidden_dim=256)
# moving_average_rewards = []
# ep_steps = []
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
writer = SummaryWriter(log_dir)
state = envs.reset()
for i_episode in range(1, cfg.train_eps+1):
log_probs = []
values = []
rewards = []
masks = []
entropy = 0
for i_step in range(1, cfg.train_steps+1):
state = torch.FloatTensor(state).to(device)
dist, value = agent.model(state)
action = dist.sample()
next_state, reward, done, _ = envs.step(action.cpu().numpy())
state = next_state
log_prob = dist.log_prob(action)
entropy += dist.entropy().mean()
log_probs.append(log_prob)
values.append(value)
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device))
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device))
if i_episode%20 == 0:
print("reward",test_env(agent,device='cpu'))
next_state = torch.FloatTensor(next_state).to(device)
_, next_value =agent.model(next_state)
returns = agent.compute_returns(next_value, rewards, masks)
log_probs = torch.cat(log_probs)
returns = torch.cat(returns).detach()
values = torch.cat(values)
advantage = returns - values
actor_loss = -(log_probs * advantage.detach()).mean()
critic_loss = advantage.pow(2).mean()
loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy
agent.optimizer.zero_grad()
loss.backward()
agent.optimizer.step()
for _ in range(100):
print("test_reward",test_env(agent,device='cpu'))
# print('Episode:', i_episode, ' Reward: %i' %
# int(ep_reward[0]), 'n_steps:', i_step)
# ep_steps.append(i_step)
# rewards.append(ep_reward)
# if i_episode == 1:
# moving_average_rewards.append(ep_reward[0])
# else:
# moving_average_rewards.append(
# 0.9*moving_average_rewards[-1]+0.1*ep_reward[0])
# writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
# writer.add_scalar('steps_of_each_episode',
# ep_steps[-1], i_episode)
writer.close()
print('Complete training')
''' 保存模型 '''
# save_model(agent,model_path=SAVED_MODEL_PATH)
# '''存储reward等相关结果'''
# save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path=RESULT_PATH)
# def eval(cfg, saved_model_path = SAVED_MODEL_PATH):
# print('start to eval ! \n')
# env = NormalizedActions(gym.make("Pendulum-v0"))
# n_states = env.observation_space.shape[0]
# n_actions = env.action_space.shape[0]
# agent = DDPG(n_states, n_actions, critic_lr=1e-3,
# actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128)
# agent.load_model(saved_model_path+'checkpoint.pth')
# rewards = []
# moving_average_rewards = []
# ep_steps = []
# log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
# writer = SummaryWriter(log_dir)
# for i_episode in range(1, cfg.eval_eps+1):
# state = env.reset() # reset环境状态
# ep_reward = 0
# for i_step in range(1, cfg.eval_steps+1):
# action = agent.choose_action(state) # 根据当前环境state选择action
# next_state, reward, done, _ = env.step(action) # 更新环境参数
# ep_reward += reward
# state = next_state # 跳转到下一个状态
# if done:
# break
# print('Episode:', i_episode, ' Reward: %i' %
# int(ep_reward), 'n_steps:', i_step, 'done: ', done)
# ep_steps.append(i_step)
# rewards.append(ep_reward)
# # 计算滑动窗口的reward
# if i_episode == 1:
# moving_average_rewards.append(ep_reward)
# else:
# moving_average_rewards.append(
# 0.9*moving_average_rewards[-1]+0.1*ep_reward)
# writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
# writer.add_scalar('steps_of_each_episode',
# ep_steps[-1], i_episode)
# writer.close()
# '''存储reward等相关结果'''
# if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
# os.mkdir(RESULT_PATH)
# np.save(RESULT_PATH+'rewards_eval.npy', rewards)
# np.save(RESULT_PATH+'moving_average_rewards_eval.npy', moving_average_rewards)
# np.save(RESULT_PATH+'steps_eval.npy', ep_steps)
if __name__ == "__main__":
cfg = get_args()
train(cfg)
# cfg = get_args()
# if cfg.train:
# train(cfg)
# eval(cfg)
# else:
# model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
# eval(cfg,saved_model_path=model_path)

35
codes/A2C/model.py Normal file
View File

@@ -0,0 +1,35 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-03 20:45:25
LastEditor: John
LastEditTime: 2020-11-07 18:49:09
Discription:
Environment:
'''
import torch.nn as nn
from torch.distributions import Categorical
class ActorCritic(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim=256, std=0.0):
super(ActorCritic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
self.actor = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, n_actions),
nn.Softmax(dim=1),
)
def forward(self, x):
value = self.critic(x)
probs = self.actor(x)
dist = Categorical(probs)
return dist, value

32
codes/A2C/utils.py Normal file
View File

@@ -0,0 +1,32 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-10-15 21:31:19
LastEditor: John
LastEditTime: 2020-11-03 17:05:48
Discription:
Environment:
'''
import os
import numpy as np
import datetime
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
def save_results(rewards,moving_average_rewards,ep_steps,path=RESULT_PATH):
if not os.path.exists(path): # 检测是否存在文件夹
os.mkdir(path)
np.save(RESULT_PATH+'rewards_train.npy', rewards)
np.save(RESULT_PATH+'moving_average_rewards_train.npy', moving_average_rewards)
np.save(RESULT_PATH+'steps_train.npy',ep_steps )
def save_model(agent,model_path='./saved_model'):
if not os.path.exists(model_path): # 检测是否存在文件夹
os.mkdir(model_path)
agent.save_model(model_path+'checkpoint.pth')
print('model saved')