add A2C
This commit is contained in:
3
codes/A2C/.vscode/settings.json
vendored
Normal file
3
codes/A2C/.vscode/settings.json
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
{
|
||||
"python.pythonPath": "/Users/jj/anaconda3/envs/py37/bin/python"
|
||||
}
|
||||
0
codes/A2C/README.md
Normal file
0
codes/A2C/README.md
Normal file
33
codes/A2C/agent.py
Normal file
33
codes/A2C/agent.py
Normal file
@@ -0,0 +1,33 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-03 20:47:09
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-08 22:16:29
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
from model import ActorCritic
|
||||
import torch.optim as optim
|
||||
|
||||
class A2C:
|
||||
def __init__(self,n_states, n_actions, hidden_dim=256,device="cpu",lr = 3e-4):
|
||||
self.device = device
|
||||
self.gamma = 0.99
|
||||
self.model = ActorCritic(n_states, n_actions, hidden_dim=hidden_dim).to(device)
|
||||
self.optimizer = optim.Adam(self.model.parameters(),lr=lr)
|
||||
def choose_action(self, state):
|
||||
dist, value = self.model(state)
|
||||
action = dist.sample()
|
||||
return action
|
||||
def compute_returns(self,next_value, rewards, masks):
|
||||
R = next_value
|
||||
returns = []
|
||||
for step in reversed(range(len(rewards))):
|
||||
R = rewards[step] + self.gamma * R * masks[step]
|
||||
returns.insert(0, R)
|
||||
return returns
|
||||
def update(self):
|
||||
pass
|
||||
0
codes/A2C/common/__init__.py
Normal file
0
codes/A2C/common/__init__.py
Normal file
153
codes/A2C/common/multiprocessing_env.py
Normal file
153
codes/A2C/common/multiprocessing_env.py
Normal file
@@ -0,0 +1,153 @@
|
||||
#This code is from openai baseline
|
||||
#https://github.com/openai/baselines/tree/master/baselines/common/vec_env
|
||||
|
||||
import numpy as np
|
||||
from multiprocessing import Process, Pipe
|
||||
|
||||
def worker(remote, parent_remote, env_fn_wrapper):
|
||||
parent_remote.close()
|
||||
env = env_fn_wrapper.x()
|
||||
while True:
|
||||
cmd, data = remote.recv()
|
||||
if cmd == 'step':
|
||||
ob, reward, done, info = env.step(data)
|
||||
if done:
|
||||
ob = env.reset()
|
||||
remote.send((ob, reward, done, info))
|
||||
elif cmd == 'reset':
|
||||
ob = env.reset()
|
||||
remote.send(ob)
|
||||
elif cmd == 'reset_task':
|
||||
ob = env.reset_task()
|
||||
remote.send(ob)
|
||||
elif cmd == 'close':
|
||||
remote.close()
|
||||
break
|
||||
elif cmd == 'get_spaces':
|
||||
remote.send((env.observation_space, env.action_space))
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
class VecEnv(object):
|
||||
"""
|
||||
An abstract asynchronous, vectorized environment.
|
||||
"""
|
||||
def __init__(self, num_envs, observation_space, action_space):
|
||||
self.num_envs = num_envs
|
||||
self.observation_space = observation_space
|
||||
self.action_space = action_space
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Reset all the environments and return an array of
|
||||
observations, or a tuple of observation arrays.
|
||||
If step_async is still doing work, that work will
|
||||
be cancelled and step_wait() should not be called
|
||||
until step_async() is invoked again.
|
||||
"""
|
||||
pass
|
||||
|
||||
def step_async(self, actions):
|
||||
"""
|
||||
Tell all the environments to start taking a step
|
||||
with the given actions.
|
||||
Call step_wait() to get the results of the step.
|
||||
You should not call this if a step_async run is
|
||||
already pending.
|
||||
"""
|
||||
pass
|
||||
|
||||
def step_wait(self):
|
||||
"""
|
||||
Wait for the step taken with step_async().
|
||||
Returns (obs, rews, dones, infos):
|
||||
- obs: an array of observations, or a tuple of
|
||||
arrays of observations.
|
||||
- rews: an array of rewards
|
||||
- dones: an array of "episode done" booleans
|
||||
- infos: a sequence of info objects
|
||||
"""
|
||||
pass
|
||||
|
||||
def close(self):
|
||||
"""
|
||||
Clean up the environments' resources.
|
||||
"""
|
||||
pass
|
||||
|
||||
def step(self, actions):
|
||||
self.step_async(actions)
|
||||
return self.step_wait()
|
||||
|
||||
|
||||
class CloudpickleWrapper(object):
|
||||
"""
|
||||
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
|
||||
"""
|
||||
def __init__(self, x):
|
||||
self.x = x
|
||||
def __getstate__(self):
|
||||
import cloudpickle
|
||||
return cloudpickle.dumps(self.x)
|
||||
def __setstate__(self, ob):
|
||||
import pickle
|
||||
self.x = pickle.loads(ob)
|
||||
|
||||
|
||||
class SubprocVecEnv(VecEnv):
|
||||
def __init__(self, env_fns, spaces=None):
|
||||
"""
|
||||
envs: list of gym environments to run in subprocesses
|
||||
"""
|
||||
self.waiting = False
|
||||
self.closed = False
|
||||
nenvs = len(env_fns)
|
||||
self.nenvs = nenvs
|
||||
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
|
||||
self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
|
||||
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
|
||||
for p in self.ps:
|
||||
p.daemon = True # if the main process crashes, we should not cause things to hang
|
||||
p.start()
|
||||
for remote in self.work_remotes:
|
||||
remote.close()
|
||||
|
||||
self.remotes[0].send(('get_spaces', None))
|
||||
observation_space, action_space = self.remotes[0].recv()
|
||||
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
|
||||
|
||||
def step_async(self, actions):
|
||||
for remote, action in zip(self.remotes, actions):
|
||||
remote.send(('step', action))
|
||||
self.waiting = True
|
||||
|
||||
def step_wait(self):
|
||||
results = [remote.recv() for remote in self.remotes]
|
||||
self.waiting = False
|
||||
obs, rews, dones, infos = zip(*results)
|
||||
return np.stack(obs), np.stack(rews), np.stack(dones), infos
|
||||
|
||||
def reset(self):
|
||||
for remote in self.remotes:
|
||||
remote.send(('reset', None))
|
||||
return np.stack([remote.recv() for remote in self.remotes])
|
||||
|
||||
def reset_task(self):
|
||||
for remote in self.remotes:
|
||||
remote.send(('reset_task', None))
|
||||
return np.stack([remote.recv() for remote in self.remotes])
|
||||
|
||||
def close(self):
|
||||
if self.closed:
|
||||
return
|
||||
if self.waiting:
|
||||
for remote in self.remotes:
|
||||
remote.recv()
|
||||
for remote in self.remotes:
|
||||
remote.send(('close', None))
|
||||
for p in self.ps:
|
||||
p.join()
|
||||
self.closed = True
|
||||
|
||||
def __len__(self):
|
||||
return self.nenvs
|
||||
48
codes/A2C/env.py
Normal file
48
codes/A2C/env.py
Normal file
@@ -0,0 +1,48 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-10-30 15:39:37
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-03 20:52:07
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
|
||||
import gym
|
||||
from common.multiprocessing_env import SubprocVecEnv
|
||||
|
||||
# num_envs = 16
|
||||
# env_name = "Pendulum-v0"
|
||||
|
||||
def make_envs(num_envs=16,env_name="Pendulum-v0"):
|
||||
''' 创建多个子环境
|
||||
'''
|
||||
num_envs = 16
|
||||
env_name = "CartPole-v0"
|
||||
def make_env():
|
||||
def _thunk():
|
||||
env = gym.make(env_name)
|
||||
return env
|
||||
|
||||
return _thunk
|
||||
|
||||
envs = [make_env() for i in range(num_envs)]
|
||||
envs = SubprocVecEnv(envs)
|
||||
return envs
|
||||
# if __name__ == "__main__":
|
||||
|
||||
# num_envs = 16
|
||||
# env_name = "CartPole-v0"
|
||||
# def make_env():
|
||||
# def _thunk():
|
||||
# env = gym.make(env_name)
|
||||
# return env
|
||||
|
||||
# return _thunk
|
||||
|
||||
# envs = [make_env() for i in range(num_envs)]
|
||||
# envs = SubprocVecEnv(envs)
|
||||
if __name__ == "__main__":
|
||||
envs = make_envs(num_envs=16,env_name="CartPole-v0")
|
||||
186
codes/A2C/main.py
Normal file
186
codes/A2C/main.py
Normal file
@@ -0,0 +1,186 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 20:58:21
|
||||
@LastEditor: John
|
||||
LastEditTime: 2020-11-08 22:19:56
|
||||
@Discription:
|
||||
@Environment: python 3.7.9
|
||||
'''
|
||||
import torch
|
||||
import gym
|
||||
import os
|
||||
import numpy as np
|
||||
import argparse
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from agent import A2C
|
||||
from env import make_envs
|
||||
from utils import SEQUENCE, SAVED_MODEL_PATH, RESULT_PATH
|
||||
from utils import save_model,save_results
|
||||
|
||||
def get_args():
|
||||
'''模型建立好之后只需要在这里调参
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--train", default=1, type=int) # 1 表示训练,0表示只进行eval
|
||||
parser.add_argument("--gamma", default=0.99,
|
||||
type=float) # reward 折扣因子
|
||||
parser.add_argument("--lr", default=3e-4, type=float) # critic学习率
|
||||
parser.add_argument("--actor_lr", default=1e-4, type=float)
|
||||
parser.add_argument("--memory_capacity", default=10000,
|
||||
type=int, help="capacity of Replay Memory")
|
||||
parser.add_argument("--batch_size", default=128, type=int,
|
||||
help="batch size of memory sampling")
|
||||
parser.add_argument("--train_eps", default=4000, type=int)
|
||||
parser.add_argument("--train_steps", default=5, type=int)
|
||||
parser.add_argument("--eval_eps", default=200, type=int) # 训练的最大episode数目
|
||||
parser.add_argument("--eval_steps", default=200,
|
||||
type=int) # 训练每个episode的长度
|
||||
parser.add_argument("--target_update", default=4, type=int,
|
||||
help="when(every default 10 eisodes) to update target net ")
|
||||
config = parser.parse_args()
|
||||
return config
|
||||
|
||||
def test_env(agent,device='cpu'):
|
||||
env = gym.make("CartPole-v0")
|
||||
state = env.reset()
|
||||
ep_reward=0
|
||||
for _ in range(200):
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||
dist, value = agent.model(state)
|
||||
action = dist.sample()
|
||||
next_state, reward, done, _ = env.step(action.cpu().numpy()[0])
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
return ep_reward
|
||||
|
||||
|
||||
def train(cfg):
|
||||
print('Start to train ! \n')
|
||||
envs = make_envs(num_envs=16,env_name="CartPole-v0")
|
||||
n_states = envs.observation_space.shape[0]
|
||||
n_actions = envs.action_space.n
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
agent = A2C(n_states, n_actions, hidden_dim=256)
|
||||
# moving_average_rewards = []
|
||||
# ep_steps = []
|
||||
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
|
||||
writer = SummaryWriter(log_dir)
|
||||
state = envs.reset()
|
||||
for i_episode in range(1, cfg.train_eps+1):
|
||||
log_probs = []
|
||||
values = []
|
||||
rewards = []
|
||||
masks = []
|
||||
entropy = 0
|
||||
for i_step in range(1, cfg.train_steps+1):
|
||||
state = torch.FloatTensor(state).to(device)
|
||||
dist, value = agent.model(state)
|
||||
action = dist.sample()
|
||||
next_state, reward, done, _ = envs.step(action.cpu().numpy())
|
||||
state = next_state
|
||||
log_prob = dist.log_prob(action)
|
||||
entropy += dist.entropy().mean()
|
||||
log_probs.append(log_prob)
|
||||
values.append(value)
|
||||
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device))
|
||||
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device))
|
||||
if i_episode%20 == 0:
|
||||
print("reward",test_env(agent,device='cpu'))
|
||||
next_state = torch.FloatTensor(next_state).to(device)
|
||||
_, next_value =agent.model(next_state)
|
||||
returns = agent.compute_returns(next_value, rewards, masks)
|
||||
|
||||
log_probs = torch.cat(log_probs)
|
||||
returns = torch.cat(returns).detach()
|
||||
values = torch.cat(values)
|
||||
advantage = returns - values
|
||||
actor_loss = -(log_probs * advantage.detach()).mean()
|
||||
critic_loss = advantage.pow(2).mean()
|
||||
loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy
|
||||
|
||||
agent.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
agent.optimizer.step()
|
||||
for _ in range(100):
|
||||
print("test_reward",test_env(agent,device='cpu'))
|
||||
|
||||
# print('Episode:', i_episode, ' Reward: %i' %
|
||||
# int(ep_reward[0]), 'n_steps:', i_step)
|
||||
# ep_steps.append(i_step)
|
||||
# rewards.append(ep_reward)
|
||||
# if i_episode == 1:
|
||||
# moving_average_rewards.append(ep_reward[0])
|
||||
# else:
|
||||
# moving_average_rewards.append(
|
||||
# 0.9*moving_average_rewards[-1]+0.1*ep_reward[0])
|
||||
# writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||||
# writer.add_scalar('steps_of_each_episode',
|
||||
# ep_steps[-1], i_episode)
|
||||
writer.close()
|
||||
print('Complete training!')
|
||||
''' 保存模型 '''
|
||||
# save_model(agent,model_path=SAVED_MODEL_PATH)
|
||||
# '''存储reward等相关结果'''
|
||||
# save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path=RESULT_PATH)
|
||||
|
||||
# def eval(cfg, saved_model_path = SAVED_MODEL_PATH):
|
||||
# print('start to eval ! \n')
|
||||
# env = NormalizedActions(gym.make("Pendulum-v0"))
|
||||
# n_states = env.observation_space.shape[0]
|
||||
# n_actions = env.action_space.shape[0]
|
||||
# agent = DDPG(n_states, n_actions, critic_lr=1e-3,
|
||||
# actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128)
|
||||
# agent.load_model(saved_model_path+'checkpoint.pth')
|
||||
# rewards = []
|
||||
# moving_average_rewards = []
|
||||
# ep_steps = []
|
||||
# log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
|
||||
# writer = SummaryWriter(log_dir)
|
||||
# for i_episode in range(1, cfg.eval_eps+1):
|
||||
# state = env.reset() # reset环境状态
|
||||
# ep_reward = 0
|
||||
# for i_step in range(1, cfg.eval_steps+1):
|
||||
# action = agent.choose_action(state) # 根据当前环境state选择action
|
||||
# next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||||
# ep_reward += reward
|
||||
# state = next_state # 跳转到下一个状态
|
||||
# if done:
|
||||
# break
|
||||
# print('Episode:', i_episode, ' Reward: %i' %
|
||||
# int(ep_reward), 'n_steps:', i_step, 'done: ', done)
|
||||
# ep_steps.append(i_step)
|
||||
# rewards.append(ep_reward)
|
||||
# # 计算滑动窗口的reward
|
||||
# if i_episode == 1:
|
||||
# moving_average_rewards.append(ep_reward)
|
||||
# else:
|
||||
# moving_average_rewards.append(
|
||||
# 0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||||
# writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||||
# writer.add_scalar('steps_of_each_episode',
|
||||
# ep_steps[-1], i_episode)
|
||||
# writer.close()
|
||||
# '''存储reward等相关结果'''
|
||||
# if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
# os.mkdir(RESULT_PATH)
|
||||
# np.save(RESULT_PATH+'rewards_eval.npy', rewards)
|
||||
# np.save(RESULT_PATH+'moving_average_rewards_eval.npy', moving_average_rewards)
|
||||
# np.save(RESULT_PATH+'steps_eval.npy', ep_steps)
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
train(cfg)
|
||||
|
||||
# cfg = get_args()
|
||||
# if cfg.train:
|
||||
# train(cfg)
|
||||
# eval(cfg)
|
||||
# else:
|
||||
# model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
|
||||
# eval(cfg,saved_model_path=model_path)
|
||||
35
codes/A2C/model.py
Normal file
35
codes/A2C/model.py
Normal file
@@ -0,0 +1,35 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-03 20:45:25
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-07 18:49:09
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import torch.nn as nn
|
||||
from torch.distributions import Categorical
|
||||
|
||||
class ActorCritic(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim=256, std=0.0):
|
||||
super(ActorCritic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, n_actions),
|
||||
nn.Softmax(dim=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
value = self.critic(x)
|
||||
probs = self.actor(x)
|
||||
dist = Categorical(probs)
|
||||
return dist, value
|
||||
32
codes/A2C/utils.py
Normal file
32
codes/A2C/utils.py
Normal file
@@ -0,0 +1,32 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-10-15 21:31:19
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-03 17:05:48
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import os
|
||||
import numpy as np
|
||||
import datetime
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
|
||||
|
||||
|
||||
def save_results(rewards,moving_average_rewards,ep_steps,path=RESULT_PATH):
|
||||
if not os.path.exists(path): # 检测是否存在文件夹
|
||||
os.mkdir(path)
|
||||
np.save(RESULT_PATH+'rewards_train.npy', rewards)
|
||||
np.save(RESULT_PATH+'moving_average_rewards_train.npy', moving_average_rewards)
|
||||
np.save(RESULT_PATH+'steps_train.npy',ep_steps )
|
||||
|
||||
def save_model(agent,model_path='./saved_model'):
|
||||
if not os.path.exists(model_path): # 检测是否存在文件夹
|
||||
os.mkdir(model_path)
|
||||
agent.save_model(model_path+'checkpoint.pth')
|
||||
print('model saved!')
|
||||
Reference in New Issue
Block a user