187 lines
7.5 KiB
Python
187 lines
7.5 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
@Author: John
|
||
@Email: johnjim0816@gmail.com
|
||
@Date: 2020-06-11 20:58:21
|
||
@LastEditor: John
|
||
LastEditTime: 2020-11-08 22:19:56
|
||
@Discription:
|
||
@Environment: python 3.7.9
|
||
'''
|
||
import torch
|
||
import gym
|
||
import os
|
||
import numpy as np
|
||
import argparse
|
||
from torch.utils.tensorboard import SummaryWriter
|
||
|
||
from agent import A2C
|
||
from env import make_envs
|
||
from utils import SEQUENCE, SAVED_MODEL_PATH, RESULT_PATH
|
||
from utils import save_model,save_results
|
||
|
||
def get_args():
|
||
'''模型建立好之后只需要在这里调参
|
||
'''
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("--train", default=1, type=int) # 1 表示训练,0表示只进行eval
|
||
parser.add_argument("--gamma", default=0.99,
|
||
type=float) # reward 折扣因子
|
||
parser.add_argument("--lr", default=3e-4, type=float) # critic学习率
|
||
parser.add_argument("--actor_lr", default=1e-4, type=float)
|
||
parser.add_argument("--memory_capacity", default=10000,
|
||
type=int, help="capacity of Replay Memory")
|
||
parser.add_argument("--batch_size", default=128, type=int,
|
||
help="batch size of memory sampling")
|
||
parser.add_argument("--train_eps", default=4000, type=int)
|
||
parser.add_argument("--train_steps", default=5, type=int)
|
||
parser.add_argument("--eval_eps", default=200, type=int) # 训练的最大episode数目
|
||
parser.add_argument("--eval_steps", default=200,
|
||
type=int) # 训练每个episode的长度
|
||
parser.add_argument("--target_update", default=4, type=int,
|
||
help="when(every default 10 eisodes) to update target net ")
|
||
config = parser.parse_args()
|
||
return config
|
||
|
||
def test_env(agent,device='cpu'):
|
||
env = gym.make("CartPole-v0")
|
||
state = env.reset()
|
||
ep_reward=0
|
||
for _ in range(200):
|
||
state = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||
dist, value = agent.model(state)
|
||
action = dist.sample()
|
||
next_state, reward, done, _ = env.step(action.cpu().numpy()[0])
|
||
state = next_state
|
||
ep_reward += reward
|
||
if done:
|
||
break
|
||
return ep_reward
|
||
|
||
|
||
def train(cfg):
|
||
print('Start to train ! \n')
|
||
envs = make_envs(num_envs=16,env_name="CartPole-v0")
|
||
n_states = envs.observation_space.shape[0]
|
||
n_actions = envs.action_space.n
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
agent = A2C(n_states, n_actions, hidden_dim=256)
|
||
# moving_average_rewards = []
|
||
# ep_steps = []
|
||
log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/train/" + SEQUENCE
|
||
writer = SummaryWriter(log_dir)
|
||
state = envs.reset()
|
||
for i_episode in range(1, cfg.train_eps+1):
|
||
log_probs = []
|
||
values = []
|
||
rewards = []
|
||
masks = []
|
||
entropy = 0
|
||
for i_step in range(1, cfg.train_steps+1):
|
||
state = torch.FloatTensor(state).to(device)
|
||
dist, value = agent.model(state)
|
||
action = dist.sample()
|
||
next_state, reward, done, _ = envs.step(action.cpu().numpy())
|
||
state = next_state
|
||
log_prob = dist.log_prob(action)
|
||
entropy += dist.entropy().mean()
|
||
log_probs.append(log_prob)
|
||
values.append(value)
|
||
rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device))
|
||
masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device))
|
||
if i_episode%20 == 0:
|
||
print("reward",test_env(agent,device='cpu'))
|
||
next_state = torch.FloatTensor(next_state).to(device)
|
||
_, next_value =agent.model(next_state)
|
||
returns = agent.compute_returns(next_value, rewards, masks)
|
||
|
||
log_probs = torch.cat(log_probs)
|
||
returns = torch.cat(returns).detach()
|
||
values = torch.cat(values)
|
||
advantage = returns - values
|
||
actor_loss = -(log_probs * advantage.detach()).mean()
|
||
critic_loss = advantage.pow(2).mean()
|
||
loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy
|
||
|
||
agent.optimizer.zero_grad()
|
||
loss.backward()
|
||
agent.optimizer.step()
|
||
for _ in range(100):
|
||
print("test_reward",test_env(agent,device='cpu'))
|
||
|
||
# print('Episode:', i_episode, ' Reward: %i' %
|
||
# int(ep_reward[0]), 'n_steps:', i_step)
|
||
# ep_steps.append(i_step)
|
||
# rewards.append(ep_reward)
|
||
# if i_episode == 1:
|
||
# moving_average_rewards.append(ep_reward[0])
|
||
# else:
|
||
# moving_average_rewards.append(
|
||
# 0.9*moving_average_rewards[-1]+0.1*ep_reward[0])
|
||
# writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||
# writer.add_scalar('steps_of_each_episode',
|
||
# ep_steps[-1], i_episode)
|
||
writer.close()
|
||
print('Complete training!')
|
||
''' 保存模型 '''
|
||
# save_model(agent,model_path=SAVED_MODEL_PATH)
|
||
# '''存储reward等相关结果'''
|
||
# save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path=RESULT_PATH)
|
||
|
||
# def eval(cfg, saved_model_path = SAVED_MODEL_PATH):
|
||
# print('start to eval ! \n')
|
||
# env = NormalizedActions(gym.make("Pendulum-v0"))
|
||
# n_states = env.observation_space.shape[0]
|
||
# n_actions = env.action_space.shape[0]
|
||
# agent = DDPG(n_states, n_actions, critic_lr=1e-3,
|
||
# actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128)
|
||
# agent.load_model(saved_model_path+'checkpoint.pth')
|
||
# rewards = []
|
||
# moving_average_rewards = []
|
||
# ep_steps = []
|
||
# log_dir=os.path.split(os.path.abspath(__file__))[0]+"/logs/eval/" + SEQUENCE
|
||
# writer = SummaryWriter(log_dir)
|
||
# for i_episode in range(1, cfg.eval_eps+1):
|
||
# state = env.reset() # reset环境状态
|
||
# ep_reward = 0
|
||
# for i_step in range(1, cfg.eval_steps+1):
|
||
# action = agent.choose_action(state) # 根据当前环境state选择action
|
||
# next_state, reward, done, _ = env.step(action) # 更新环境参数
|
||
# ep_reward += reward
|
||
# state = next_state # 跳转到下一个状态
|
||
# if done:
|
||
# break
|
||
# print('Episode:', i_episode, ' Reward: %i' %
|
||
# int(ep_reward), 'n_steps:', i_step, 'done: ', done)
|
||
# ep_steps.append(i_step)
|
||
# rewards.append(ep_reward)
|
||
# # 计算滑动窗口的reward
|
||
# if i_episode == 1:
|
||
# moving_average_rewards.append(ep_reward)
|
||
# else:
|
||
# moving_average_rewards.append(
|
||
# 0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||
# writer.add_scalars('rewards',{'raw':rewards[-1], 'moving_average': moving_average_rewards[-1]}, i_episode)
|
||
# writer.add_scalar('steps_of_each_episode',
|
||
# ep_steps[-1], i_episode)
|
||
# writer.close()
|
||
# '''存储reward等相关结果'''
|
||
# if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||
# os.mkdir(RESULT_PATH)
|
||
# np.save(RESULT_PATH+'rewards_eval.npy', rewards)
|
||
# np.save(RESULT_PATH+'moving_average_rewards_eval.npy', moving_average_rewards)
|
||
# np.save(RESULT_PATH+'steps_eval.npy', ep_steps)
|
||
|
||
if __name__ == "__main__":
|
||
cfg = get_args()
|
||
train(cfg)
|
||
|
||
# cfg = get_args()
|
||
# if cfg.train:
|
||
# train(cfg)
|
||
# eval(cfg)
|
||
# else:
|
||
# model_path = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"
|
||
# eval(cfg,saved_model_path=model_path)
|