154 lines
4.8 KiB
Python
154 lines
4.8 KiB
Python
#This code is from openai baseline
|
|
#https://github.com/openai/baselines/tree/master/baselines/common/vec_env
|
|
|
|
import numpy as np
|
|
from multiprocessing import Process, Pipe
|
|
|
|
def worker(remote, parent_remote, env_fn_wrapper):
|
|
parent_remote.close()
|
|
env = env_fn_wrapper.x()
|
|
while True:
|
|
cmd, data = remote.recv()
|
|
if cmd == 'step':
|
|
ob, reward, done, info = env.step(data)
|
|
if done:
|
|
ob = env.reset()
|
|
remote.send((ob, reward, done, info))
|
|
elif cmd == 'reset':
|
|
ob = env.reset()
|
|
remote.send(ob)
|
|
elif cmd == 'reset_task':
|
|
ob = env.reset_task()
|
|
remote.send(ob)
|
|
elif cmd == 'close':
|
|
remote.close()
|
|
break
|
|
elif cmd == 'get_spaces':
|
|
remote.send((env.observation_space, env.action_space))
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
class VecEnv(object):
|
|
"""
|
|
An abstract asynchronous, vectorized environment.
|
|
"""
|
|
def __init__(self, num_envs, observation_space, action_space):
|
|
self.num_envs = num_envs
|
|
self.observation_space = observation_space
|
|
self.action_space = action_space
|
|
|
|
def reset(self):
|
|
"""
|
|
Reset all the environments and return an array of
|
|
observations, or a tuple of observation arrays.
|
|
If step_async is still doing work, that work will
|
|
be cancelled and step_wait() should not be called
|
|
until step_async() is invoked again.
|
|
"""
|
|
pass
|
|
|
|
def step_async(self, actions):
|
|
"""
|
|
Tell all the environments to start taking a step
|
|
with the given actions.
|
|
Call step_wait() to get the results of the step.
|
|
You should not call this if a step_async run is
|
|
already pending.
|
|
"""
|
|
pass
|
|
|
|
def step_wait(self):
|
|
"""
|
|
Wait for the step taken with step_async().
|
|
Returns (obs, rews, dones, infos):
|
|
- obs: an array of observations, or a tuple of
|
|
arrays of observations.
|
|
- rews: an array of rewards
|
|
- dones: an array of "episode done" booleans
|
|
- infos: a sequence of info objects
|
|
"""
|
|
pass
|
|
|
|
def close(self):
|
|
"""
|
|
Clean up the environments' resources.
|
|
"""
|
|
pass
|
|
|
|
def step(self, actions):
|
|
self.step_async(actions)
|
|
return self.step_wait()
|
|
|
|
|
|
class CloudpickleWrapper(object):
|
|
"""
|
|
Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)
|
|
"""
|
|
def __init__(self, x):
|
|
self.x = x
|
|
def __getstate__(self):
|
|
import cloudpickle
|
|
return cloudpickle.dumps(self.x)
|
|
def __setstate__(self, ob):
|
|
import pickle
|
|
self.x = pickle.loads(ob)
|
|
|
|
|
|
class SubprocVecEnv(VecEnv):
|
|
def __init__(self, env_fns, spaces=None):
|
|
"""
|
|
envs: list of gym environments to run in subprocesses
|
|
"""
|
|
self.waiting = False
|
|
self.closed = False
|
|
nenvs = len(env_fns)
|
|
self.nenvs = nenvs
|
|
self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)])
|
|
self.ps = [Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn)))
|
|
for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)]
|
|
for p in self.ps:
|
|
p.daemon = True # if the main process crashes, we should not cause things to hang
|
|
p.start()
|
|
for remote in self.work_remotes:
|
|
remote.close()
|
|
|
|
self.remotes[0].send(('get_spaces', None))
|
|
observation_space, action_space = self.remotes[0].recv()
|
|
VecEnv.__init__(self, len(env_fns), observation_space, action_space)
|
|
|
|
def step_async(self, actions):
|
|
for remote, action in zip(self.remotes, actions):
|
|
remote.send(('step', action))
|
|
self.waiting = True
|
|
|
|
def step_wait(self):
|
|
results = [remote.recv() for remote in self.remotes]
|
|
self.waiting = False
|
|
obs, rews, dones, infos = zip(*results)
|
|
return np.stack(obs), np.stack(rews), np.stack(dones), infos
|
|
|
|
def reset(self):
|
|
for remote in self.remotes:
|
|
remote.send(('reset', None))
|
|
return np.stack([remote.recv() for remote in self.remotes])
|
|
|
|
def reset_task(self):
|
|
for remote in self.remotes:
|
|
remote.send(('reset_task', None))
|
|
return np.stack([remote.recv() for remote in self.remotes])
|
|
|
|
def close(self):
|
|
if self.closed:
|
|
return
|
|
if self.waiting:
|
|
for remote in self.remotes:
|
|
remote.recv()
|
|
for remote in self.remotes:
|
|
remote.send(('close', None))
|
|
for p in self.ps:
|
|
p.join()
|
|
self.closed = True
|
|
|
|
def __len__(self):
|
|
return self.nenvs
|