Files
easy-rl/codes/PolicyGradient/agent.py
2020-11-23 12:13:34 +08:00

68 lines
2.0 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-22 23:27:44
LastEditor: John
LastEditTime: 2020-11-23 12:05:03
Discription:
Environment:
'''
import torch
from torch.distributions import Bernoulli
from torch.autograd import Variable
import numpy as np
from model import FCN
class PolicyGradient:
def __init__(self, n_states,device='cpu',gamma = 0.99,lr = 0.01,batch_size=5):
self.gamma = gamma
self.policy_net = FCN(n_states)
self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=lr)
self.batch_size = batch_size
def choose_action(self,state):
state = torch.from_numpy(state).float()
state = Variable(state)
probs = self.policy_net(state)
m = Bernoulli(probs)
action = m.sample()
action = action.data.numpy().astype(int)[0] # 转为标量
return action
def update(self,reward_pool,state_pool,action_pool):
# Discount reward
running_add = 0
for i in reversed(range(len(reward_pool))):
if reward_pool[i] == 0:
running_add = 0
else:
running_add = running_add * self.gamma + reward_pool[i]
reward_pool[i] = running_add
# Normalize reward
reward_mean = np.mean(reward_pool)
reward_std = np.std(reward_pool)
for i in range(len(reward_pool)):
reward_pool[i] = (reward_pool[i] - reward_mean) / reward_std
# Gradient Desent
self.optimizer.zero_grad()
for i in range(len(reward_pool)):
state = state_pool[i]
action = Variable(torch.FloatTensor([action_pool[i]]))
reward = reward_pool[i]
state = Variable(torch.from_numpy(state).float())
probs = self.policy_net(state)
m = Bernoulli(probs)
loss = -m.log_prob(action) * reward # Negtive score function x reward
# print(loss)
loss.backward()
self.optimizer.step()