update PolicyGradient
This commit is contained in:
68
codes/PolicyGradient/agent.py
Normal file
68
codes/PolicyGradient/agent.py
Normal file
@@ -0,0 +1,68 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-22 23:27:44
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-23 12:05:03
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import torch
|
||||
from torch.distributions import Bernoulli
|
||||
from torch.autograd import Variable
|
||||
import numpy as np
|
||||
|
||||
from model import FCN
|
||||
|
||||
class PolicyGradient:
|
||||
|
||||
def __init__(self, n_states,device='cpu',gamma = 0.99,lr = 0.01,batch_size=5):
|
||||
self.gamma = gamma
|
||||
self.policy_net = FCN(n_states)
|
||||
self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=lr)
|
||||
self.batch_size = batch_size
|
||||
|
||||
def choose_action(self,state):
|
||||
|
||||
state = torch.from_numpy(state).float()
|
||||
state = Variable(state)
|
||||
probs = self.policy_net(state)
|
||||
m = Bernoulli(probs)
|
||||
action = m.sample()
|
||||
|
||||
action = action.data.numpy().astype(int)[0] # 转为标量
|
||||
return action
|
||||
|
||||
def update(self,reward_pool,state_pool,action_pool):
|
||||
# Discount reward
|
||||
running_add = 0
|
||||
for i in reversed(range(len(reward_pool))):
|
||||
if reward_pool[i] == 0:
|
||||
running_add = 0
|
||||
else:
|
||||
running_add = running_add * self.gamma + reward_pool[i]
|
||||
reward_pool[i] = running_add
|
||||
|
||||
# Normalize reward
|
||||
reward_mean = np.mean(reward_pool)
|
||||
reward_std = np.std(reward_pool)
|
||||
for i in range(len(reward_pool)):
|
||||
reward_pool[i] = (reward_pool[i] - reward_mean) / reward_std
|
||||
|
||||
# Gradient Desent
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
for i in range(len(reward_pool)):
|
||||
state = state_pool[i]
|
||||
action = Variable(torch.FloatTensor([action_pool[i]]))
|
||||
reward = reward_pool[i]
|
||||
|
||||
state = Variable(torch.from_numpy(state).float())
|
||||
probs = self.policy_net(state)
|
||||
m = Bernoulli(probs)
|
||||
loss = -m.log_prob(action) * reward # Negtive score function x reward
|
||||
# print(loss)
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
19
codes/PolicyGradient/env.py
Normal file
19
codes/PolicyGradient/env.py
Normal file
@@ -0,0 +1,19 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-22 23:23:10
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-23 11:55:24
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import gym
|
||||
|
||||
def env_init():
|
||||
env = gym.make('CartPole-v0') # 可google为什么unwrapped gym,此处一般不需要
|
||||
env.seed(1) # 设置env随机种子
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
return env,n_states,n_actions
|
||||
52
codes/PolicyGradient/main.py
Normal file
52
codes/PolicyGradient/main.py
Normal file
@@ -0,0 +1,52 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-22 23:21:53
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-23 12:06:15
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
from itertools import count
|
||||
import torch
|
||||
from env import env_init
|
||||
from params import get_args
|
||||
from agent import PolicyGradient
|
||||
|
||||
def train(cfg):
|
||||
env,n_states,n_actions = env_init()
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
agent = PolicyGradient(n_states,device = device,lr = cfg.policy_lr)
|
||||
'''下面带pool都是存放的transition序列用于gradient'''
|
||||
state_pool = [] # 存放每batch_size个episode的state序列
|
||||
action_pool = []
|
||||
reward_pool = []
|
||||
for i_episode in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
for t in count():
|
||||
action = agent.choose_action(state) # 根据当前环境state选择action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
if done:
|
||||
reward = 0
|
||||
state_pool.append(state)
|
||||
action_pool.append(float(action))
|
||||
reward_pool.append(reward)
|
||||
state = next_state
|
||||
if done:
|
||||
print('Episode:', i_episode, ' Reward:', ep_reward)
|
||||
break
|
||||
# if i_episode % cfg.batch_size == 0:
|
||||
if i_episode > 0 and i_episode % 5 == 0:
|
||||
agent.update(reward_pool,state_pool,action_pool)
|
||||
state_pool = [] # 每个episode的state
|
||||
action_pool = []
|
||||
reward_pool = []
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
train(cfg)
|
||||
27
codes/PolicyGradient/model.py
Normal file
27
codes/PolicyGradient/model.py
Normal file
@@ -0,0 +1,27 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-22 23:18:46
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-23 01:58:22
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
class FCN(nn.Module):
|
||||
''' 全连接网络'''
|
||||
def __init__(self,n_states):
|
||||
super(FCN, self).__init__()
|
||||
# 24和36为hidden layer的层数,可根据n_states, n_actions的情况来改变
|
||||
self.fc1 = nn.Linear(n_states, 24)
|
||||
self.fc2 = nn.Linear(24, 36)
|
||||
self.fc3 = nn.Linear(36, 1) # Prob of Left
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
x = F.sigmoid(self.fc3(x))
|
||||
return x
|
||||
19
codes/PolicyGradient/params.py
Normal file
19
codes/PolicyGradient/params.py
Normal file
@@ -0,0 +1,19 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-11-22 23:25:37
|
||||
LastEditor: John
|
||||
LastEditTime: 2020-11-22 23:32:44
|
||||
Discription: 存储参数
|
||||
Environment:
|
||||
'''
|
||||
import argparse
|
||||
def get_args():
|
||||
'''训练参数'''
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--train_eps", default=1200, type=int) # 训练的最大episode数目
|
||||
parser.add_argument("--policy_lr", default=0.01, type=float) # 学习率
|
||||
config = parser.parse_args()
|
||||
return config
|
||||
Reference in New Issue
Block a user