Files
easy-rl/codes/QLearning/task0.py
johnjim0816 bd51b5a7ad update codes
2021-12-28 18:46:52 +08:00

94 lines
3.4 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-12-22 11:13:23
Discription:
Environment:
'''
import sys
import os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
from envs.gridworld_env import CliffWalkingWapper
from QLearning.agent import QLearning
from QLearning.train import train,test
from common.utils import plot_rewards,plot_rewards_cn
from common.utils import save_results,make_dir
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = 'Q-learning' # 算法名称
env_name = 'CliffWalking-v0' # 环境名称
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
class QlearningConfig:
'''训练相关参数'''
def __init__(self):
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = device # 检测GPU
self.train_eps = 400 # 训练的回合数
self.test_eps = 30 # 测试的回合数
self.gamma = 0.9 # reward的衰减率
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 300 # e-greedy策略中epsilon的衰减率
self.lr = 0.1 # 学习率
class PlotConfig:
''' 绘图相关参数设置
'''
def __init__(self) -> None:
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = device # 检测GPU
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
def env_agent_config(cfg,seed=1):
'''创建环境和智能体
Args:
cfg ([type]): [description]
seed (int, optional): 随机种子. Defaults to 1.
Returns:
env [type]: 环境
agent : 智能体
'''
env = gym.make(cfg.env_name)
env = CliffWalkingWapper(env)
env.seed(seed) # 设置随机种子
state_dim = env.observation_space.n # 状态维度
action_dim = env.action_space.n # 动作维度
agent = QLearning(state_dim,action_dim,cfg)
return env,agent
cfg = QlearningConfig()
plot_cfg = PlotConfig()
# 训练
env, agent = env_agent_config(cfg, seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=plot_cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train',
path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg, seed=10)
agent.load(path=plot_cfg.model_path) # 导入模型
rewards, ma_rewards = test(cfg, env, agent)
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果