update codes

This commit is contained in:
johnjim0816
2021-12-28 18:46:52 +08:00
parent 41fb561d25
commit bd51b5a7ad
52 changed files with 305 additions and 292 deletions

View File

@@ -40,10 +40,10 @@ class ActorCritic(nn.Module):
class A2C:
''' A2C算法
'''
def __init__(self,n_states,n_actions,cfg) -> None:
def __init__(self,state_dim,action_dim,cfg) -> None:
self.gamma = cfg.gamma
self.device = cfg.device
self.model = ActorCritic(n_states, n_actions, cfg.hidden_size).to(self.device)
self.model = ActorCritic(state_dim, action_dim, cfg.hidden_size).to(self.device)
self.optimizer = optim.Adam(self.model.parameters())
def compute_returns(self,next_value, rewards, masks):

View File

@@ -74,9 +74,9 @@ def train(cfg,envs):
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
env = gym.make(cfg.env_name) # a single env
env.seed(10)
n_states = envs.observation_space.shape[0]
n_actions = envs.action_space.n
model = ActorCritic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
state_dim = envs.observation_space.shape[0]
action_dim = envs.action_space.n
model = ActorCritic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
optimizer = optim.Adam(model.parameters())
frame_idx = 0
test_rewards = []

View File

@@ -39,11 +39,11 @@ class ReplayBuffer:
'''
return len(self.buffer)
class Actor(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3):
super(Actor, self).__init__()
self.linear1 = nn.Linear(n_states, hidden_dim)
self.linear1 = nn.Linear(state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, n_actions)
self.linear3 = nn.Linear(hidden_dim, action_dim)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
@@ -54,10 +54,10 @@ class Actor(nn.Module):
x = torch.tanh(self.linear3(x))
return x
class Critic(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3):
super(Critic, self).__init__()
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
self.linear1 = nn.Linear(state_dim + action_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
# 随机初始化为较小的值
@@ -72,12 +72,12 @@ class Critic(nn.Module):
x = self.linear3(x)
return x
class DDPG:
def __init__(self, n_states, n_actions, cfg):
def __init__(self, state_dim, action_dim, cfg):
self.device = cfg.device
self.critic = Critic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
self.actor = Actor(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
self.target_critic = Critic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
self.target_actor = Actor(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
self.critic = Critic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
self.actor = Actor(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
self.target_critic = Critic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
self.target_actor = Actor(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
# 复制参数到目标网络
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):

View File

@@ -39,15 +39,15 @@ class OUNoise(object):
self.max_sigma = max_sigma
self.min_sigma = min_sigma
self.decay_period = decay_period
self.n_actions = action_space.shape[0]
self.action_dim = action_space.shape[0]
self.low = action_space.low
self.high = action_space.high
self.reset()
def reset(self):
self.obs = np.ones(self.n_actions) * self.mu
self.obs = np.ones(self.action_dim) * self.mu
def evolve_obs(self):
x = self.obs
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.n_actions)
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.action_dim)
self.obs = x + dx
return self.obs
def get_action(self, action, t=0):

View File

@@ -58,9 +58,9 @@ class PlotConfig:
def env_agent_config(cfg,seed=1):
env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声
env.seed(seed) # 随机种子
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
agent = DDPG(n_states,n_actions,cfg)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
agent = DDPG(state_dim,action_dim,cfg)
return env,agent
cfg = DDPGConfig()

View File

@@ -50,15 +50,15 @@ import torch.nn as nn
import torch.nn.functional as F
class FCN(nn.Module):
def __init__(self, n_states=4, n_actions=18):
def __init__(self, state_dim=4, action_dim=18):
""" 初始化q网络为全连接网络
n_states: 输入的feature即环境的state数目
n_actions: 输出的action总个数
state_dim: 输入的feature即环境的state数目
action_dim: 输出的action总个数
"""
super(FCN, self).__init__()
self.fc1 = nn.Linear(n_states, 128) # 输入层
self.fc1 = nn.Linear(state_dim, 128) # 输入层
self.fc2 = nn.Linear(128, 128) # 隐藏层
self.fc3 = nn.Linear(128, n_actions) # 输出层
self.fc3 = nn.Linear(128, action_dim) # 输出层
def forward(self, x):
# 各层对应的激活函数
@@ -66,7 +66,7 @@ class FCN(nn.Module):
x = F.relu(self.fc2(x))
return self.fc3(x)
```
输入为n_states,输出为n_actions包含一个128维度的隐藏层这里根据需要可增加隐藏层维度和数量然后一般使用relu激活函数这里跟深度学习的网路设置是一样的。
输入为state_dim输出为action_dim包含一个128维度的隐藏层这里根据需要可增加隐藏层维度和数量然后一般使用relu激活函数这里跟深度学习的网路设置是一样的。
### Replay Buffer
@@ -107,8 +107,8 @@ class ReplayBuffer:
在类中建立两个网络以及optimizer和memory
```python
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # copy params from policy net
target_param.data.copy_(param.data)
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
@@ -124,7 +124,7 @@ def choose_action(self, state):
if random.random() > self.epsilon(self.frame_idx):
action = self.predict(state)
else:
action = random.randrange(self.n_actions)
action = random.randrange(self.action_dim)
return action
```

View File

@@ -21,15 +21,15 @@ import math
import numpy as np
class MLP(nn.Module):
def __init__(self, n_states,n_actions,hidden_dim=128):
def __init__(self, state_dim,action_dim,hidden_dim=128):
""" 初始化q网络为全连接网络
n_states: 输入的特征数即环境的状态
n_actions: 输出的动作维度
state_dim: 输入的特征数即环境的状态维度
action_dim: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
self.fc1 = nn.Linear(state_dim, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
self.fc3 = nn.Linear(hidden_dim, action_dim) # 输出层
def forward(self, x):
# 各层对应的激活函数
@@ -62,9 +62,9 @@ class ReplayBuffer:
return len(self.buffer)
class DQN:
def __init__(self, n_states, n_actions, cfg):
def __init__(self, state_dim, action_dim, cfg):
self.n_actions = n_actions # 总的动作个数
self.action_dim = action_dim # 总的动作个数
self.device = cfg.device # 设备cpu或gpu等
self.gamma = cfg.gamma # 奖励的折扣因子
# e-greedy策略相关参数
@@ -73,8 +73,8 @@ class DQN:
(cfg.epsilon_start - cfg.epsilon_end) * \
math.exp(-1. * frame_idx / cfg.epsilon_decay)
self.batch_size = cfg.batch_size
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
target_param.data.copy_(param.data)
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
@@ -90,7 +90,7 @@ class DQN:
q_values = self.policy_net(state)
action = q_values.max(1)[1].item() # 选择Q值最大的动作
else:
action = random.randrange(self.n_actions)
action = random.randrange(self.action_dim)
return action
def update(self):
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时不更新策略

View File

@@ -70,9 +70,9 @@ class ReplayBuffer:
return len(self.buffer)
class DQN:
def __init__(self, n_states, n_actions, cfg):
def __init__(self, state_dim, action_dim, cfg):
self.n_actions = n_actions # 总的动作个数
self.action_dim = action_dim # 总的动作个数
self.device = cfg.device # 设备cpu或gpu等
self.gamma = cfg.gamma # 奖励的折扣因子
# e-greedy策略相关参数
@@ -81,8 +81,8 @@ class DQN:
(cfg.epsilon_start - cfg.epsilon_end) * \
math.exp(-1. * frame_idx / cfg.epsilon_decay)
self.batch_size = cfg.batch_size
self.policy_net = CNN(n_states, n_actions).to(self.device)
self.target_net = CNN(n_states, n_actions).to(self.device)
self.policy_net = CNN(state_dim, action_dim).to(self.device)
self.target_net = CNN(state_dim, action_dim).to(self.device)
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
target_param.data.copy_(param.data)
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
@@ -98,7 +98,7 @@ class DQN:
q_values = self.policy_net(state)
action = q_values.max(1)[1].item() # 选择Q值最大的动作
else:
action = random.randrange(self.n_actions)
action = random.randrange(self.action_dim)
return action
def update(self):
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时不更新策略

View File

@@ -7,23 +7,29 @@ sys.path.append(parent_path) # 添加路径到系统路径
import gym
import torch
import datetime
import numpy as np
from common.utils import save_results, make_dir
from common.utils import plot_rewards
from DQN.dqn import DQN
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = 'DQN' # 算法名称
env_name = 'CartPole-v0' # 环境名称
class DQNConfig:
class Config:
'''超参数
'''
def __init__(self):
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
################################## 环境超参数 ###################################
self.algo_name = 'DQN' # 算法名称
self.env_name = 'CartPole-v0' # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十
self.train_eps = 200 # 训练的回合数
self.test_eps = 30 # 测试的回合数
# 超参数
################################################################################
################################## 算法超参数 ###################################
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
@@ -33,99 +39,106 @@ class DQNConfig:
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 4 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
class PlotConfig:
def __init__(self) -> None:
self.algo = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
################################################################################
################################# 保存结果相关参数 ################################
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
self.save = True # 是否保存图片
################################################################################
def env_agent_config(cfg, seed=1):
''' 创建环境和智能体
'''
env = gym.make(cfg.env_name) # 创建环境
env.seed(seed) # 设置随机种子
n_states = env.observation_space.shape[0] # 状态数
n_actions = env.action_space.n # 动作数
agent = DQN(n_states, n_actions, cfg) # 创建智能体
state_dim = env.observation_space.shape[0] # 状态维度
action_dim = env.action_space.n # 动作维度
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
if seed !=0: # 设置随机种子
torch.manual_seed(seed)
env.seed(seed)
np.random.seed(seed)
return env, agent
def train(cfg, env, agent):
''' 训练
'''
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
agent.memory.push(state, action, reward, next_state, done) # 保存transition
state = next_state # 更新下一个状态
agent.update() # 更新智能体
ep_reward += reward # 累加奖励
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
agent.memory.push(state, action, reward,
next_state, done) # 保存transition
state = next_state # 更新下一个状态
agent.update() # 更新智能体
ep_reward += reward # 累加奖励
if done:
break
if (i_ep+1) % cfg.target_update == 0: # 智能体目标网络更新
if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新
agent.target_net.load_state_dict(agent.policy_net.state_dict())
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward)
else:
ma_rewards.append(ep_reward)
if (i_ep+1)%10 == 0:
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
if (i_ep + 1) % 10 == 0:
print('回合:{}/{}, 奖励:{}'.format(i_ep + 1, cfg.train_eps, ep_reward))
print('完成训练!')
return rewards, ma_rewards
def test(cfg,env,agent):
def test(cfg, env, agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
rewards = [] # 记录所有回合的奖励
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.test_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
state = next_state # 更新下一个状态
ep_reward += reward # 累加奖励
action = agent.choose_action(state) # 选择动作
next_state, reward, done, _ = env.step(action) # 更新环境返回transition
state = next_state # 更新下一个状态
ep_reward += reward # 累加奖励
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1)
else:
ma_rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
print('完成测试!')
return rewards,ma_rewards
return rewards, ma_rewards
if __name__ == "__main__":
cfg = DQNConfig()
plot_cfg = PlotConfig()
cfg = Config()
# 训练
env, agent = env_agent_config(cfg, seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=plot_cfg.model_path) # 保存模型
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train',
path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
path=cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg, seed=10)
agent.load(path=plot_cfg.model_path) # 导入模型
agent.load(path=cfg.model_path) # 导入模型
rewards, ma_rewards = test(cfg, env, agent)
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果
save_results(rewards, ma_rewards, tag='test',
path=cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果

View File

@@ -66,9 +66,9 @@ def env_agent_config(cfg, seed=1):
'''
env = gym.make(cfg.env_name) # 创建环境
env.seed(seed) # 设置随机种子
n_states = env.observation_space.shape[0] # 状态
n_actions = env.action_space.n # 动作
agent = DQN(n_states, n_actions, cfg) # 创建智能体
state_dim = env.observation_space.shape[0] # 状态维度
action_dim = env.action_space.n # 动作维度
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
return env, agent
def train(cfg, env, agent):

View File

@@ -68,9 +68,9 @@ def env_agent_config(cfg, seed=1):
# env = wrap_deepmind(env)
# env = wrap_pytorch(env)
env.seed(seed) # 设置随机种子
n_states = env.observation_space.shape[0] # 状态
n_actions = env.action_space.n # 动作
agent = DQN(n_states, n_actions, cfg) # 创建智能体
state_dim = env.observation_space.shape[0] # 状态维度
action_dim = env.action_space.n # 动作维度
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
return env, agent
def train(cfg, env, agent):

View File

@@ -6,7 +6,7 @@
<img src="../../easy_rl_book/res/ch12/assets/pendulum_1.png" alt="image-20210915161550713" style="zoom:50%;" />
该环境的状态有三个,设摆针竖直方向上的顺时针旋转角为$\theta$$\theta$设在$[-\pi,\pi]$之间,则相应的状态为$[cos\theta,sin\theta,\dot{\theta}]$,即表示角度和角速度,我们的动作则是一个-2到2之间的力矩它是一个连续量因而该环境不能用离散动作的算法比如 DQN 来解决。关于奖励是根据相关的物理原理而计算出的等式,如下:
该环境的状态维度有三个,设摆针竖直方向上的顺时针旋转角为$\theta$$\theta$设在$[-\pi,\pi]$之间,则相应的状态为$[cos\theta,sin\theta,\dot{\theta}]$,即表示角度和角速度,我们的动作则是一个-2到2之间的力矩它是一个连续量因而该环境不能用离散动作的算法比如 DQN 来解决。关于奖励是根据相关的物理原理而计算出的等式,如下:
$$
-\left(\theta^{2}+0.1 * \hat{\theta}^{2}+0.001 * \text { action }^{2}\right)
$$
@@ -90,15 +90,15 @@ class OUNoise(object):
self.max_sigma = max_sigma
self.min_sigma = min_sigma
self.decay_period = decay_period
self.n_actions = action_space.shape[0]
self.action_dim = action_space.shape[0]
self.low = action_space.low
self.high = action_space.high
self.reset()
def reset(self):
self.obs = np.ones(self.n_actions) * self.mu
self.obs = np.ones(self.action_dim) * self.mu
def evolve_obs(self):
x = self.obs
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.n_actions)
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.action_dim)
self.obs = x + dx
return self.obs
def get_action(self, action, t=0):

View File

@@ -14,21 +14,21 @@ CartPole-v0是一个经典的入门环境如下图它通过向左(动作=0
import gym
env = gym.make('CartPole-v0') # 建立环境
env.seed(1) # 随机种子
n_states = env.observation_space.shape[0] # 状态
n_actions = env.action_space.n # 动作
state_dim = env.observation_space.shape[0] # 状态维度
action_dim = env.action_space.n # 动作维度
state = env.reset() # 初始化环境
print(f"状态{n_states},动作{n_actions}")
print(f"状态维度{state_dim},动作维度{action_dim}")
print(f"初始状态:{state}")
```
可以得到结果:
```bash
状态4动作2
状态维度4动作维度2
初始状态:[ 0.03073904 0.00145001 -0.03088818 -0.03131252]
```
该环境状态是四个,分别为车的位置、车的速度、杆的角度以及杆顶部的速度,动作为两个并且是离散的向左或者向右。理论上达到最优化算法的情况下推车杆是一直能保持平衡的也就是每回合的步数是无限但是这不方便训练所以环境内部设置了每回合的最大步数为200也就是说理想情况下只需要我们每回合的奖励达到200就算训练完成。
该环境状态维度是四个,分别为车的位置、车的速度、杆的角度以及杆顶部的速度,动作维度为两个并且是离散的向左或者向右。理论上达到最优化算法的情况下推车杆是一直能保持平衡的也就是每回合的步数是无限但是这不方便训练所以环境内部设置了每回合的最大步数为200也就是说理想情况下只需要我们每回合的奖励达到200就算训练完成。
## DQN基本接口
@@ -125,7 +125,7 @@ class ReplayBuffer:
class MLP(nn.Module):
def __init__(self, input_dim,output_dim,hidden_dim=128):
""" 初始化q网络为全连接网络
input_dim: 输入的特征数即环境的状态
input_dim: 输入的特征数即环境的状态维度
output_dim: 输出的动作维度
"""
super(MLP, self).__init__()
@@ -157,7 +157,7 @@ def choose_action(self, state):
q_values = self.policy_net(state)
action = q_values.max(1)[1].item() # 选择Q值最大的动作
else:
action = random.randrange(self.n_actions)
action = random.randrange(self.action_dim)
```
可以看到跟Q学习算法其实是一样的都是用的$\epsilon-greedy$策略只是使用神经网络的话我们需要通过Torch或者Tensorflow工具来处理相应的数据。

View File

@@ -27,21 +27,21 @@ env = gym.make('CliffWalking-v0') # 定义环境
env = CliffWalkingWapper(env) # 装饰环境
```
这里我们在程序中使用了一个装饰器重新定义环境但不影响对环境的理解感兴趣的同学具体看相关代码。可以由于gym环境封装得比较好所以我们想要使用这个环境只需要使用gym.make命令输入函数名即可然后我们可以查看环境的状态和动作目:
这里我们在程序中使用了一个装饰器重新定义环境但不影响对环境的理解感兴趣的同学具体看相关代码。可以由于gym环境封装得比较好所以我们想要使用这个环境只需要使用gym.make命令输入函数名即可然后我们可以查看环境的状态和动作维度目:
```python
n_states = env.observation_space.n # 状态
n_actions = env.action_space.n # 动作
print(f"状态{n_states},动作{n_actions}")
state_dim = env.observation_space.n # 状态维度
action_dim = env.action_space.n # 动作维度
print(f"状态维度{state_dim},动作维度{action_dim}")
```
打印出来的结果如下:
```bash
状态48动作4
状态维度48动作维度4
```
我们的状态是48个这里我们设置的是智能体当前所在网格的编号而动作是4这表示有0123对应着上下左右四个动作。另外我们也可以初始化环境并打印当前所在的状态
我们的状态维度是48个这里我们设置的是智能体当前所在网格的编号而动作维度是4这表示有0123对应着上下左右四个动作。另外我们也可以初始化环境并打印当前所在的状态
```python
state = env.reset()
@@ -72,9 +72,9 @@ print(state)
env = gym.make('CliffWalking-v0') # 定义环境
env = CliffWalkingWapper(env) # 装饰环境
env.seed(1) # 设置随机种子
n_states = env.observation_space.n # 状态
n_actions = env.action_space.n # 动作
agent = QLearning(n_states,n_actions,cfg) # cfg存储算法相关参数
state_dim = env.observation_space.n # 状态维度
action_dim = env.action_space.n # 动作维度
agent = QLearning(state_dim,action_dim,cfg) # cfg存储算法相关参数
for i_ep in range(cfg.train_eps): # cfg.train_eps表示最大训练的回合数
ep_reward = 0 # 记录每个回合的奖励
state = env.reset() # 重置环境
@@ -126,7 +126,7 @@ def choose_action(self, state):
if np.random.uniform(0, 1) > self.epsilon:
action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作
else:
action = np.random.choice(self.n_actions) # 随机选择动作
action = np.random.choice(self.action_dim) # 随机选择动作
return action
```

View File

@@ -46,15 +46,15 @@ class ReplayBuffer:
return len(self.buffer)
class MLP(nn.Module):
def __init__(self, n_states,n_actions,hidden_dim=128):
def __init__(self, state_dim,action_dim,hidden_dim=128):
""" 初始化q网络为全连接网络
n_states: 输入的特征数即环境的状态
n_actions: 输出的动作维度
state_dim: 输入的特征数即环境的状态维度
action_dim: 输出的动作维度
"""
super(MLP, self).__init__()
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
self.fc1 = nn.Linear(state_dim, hidden_dim) # 输入层
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
self.fc3 = nn.Linear(hidden_dim, action_dim) # 输出层
def forward(self, x):
# 各层对应的激活函数
@@ -63,8 +63,8 @@ class MLP(nn.Module):
return self.fc3(x)
class DoubleDQN:
def __init__(self, n_states, n_actions, cfg):
self.n_actions = n_actions # 总的动作个数
def __init__(self, state_dim, action_dim, cfg):
self.action_dim = action_dim # 总的动作个数
self.device = cfg.device # 设备cpu或gpu等
self.gamma = cfg.gamma
# e-greedy策略相关参数
@@ -73,8 +73,8 @@ class DoubleDQN:
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.batch_size = cfg.batch_size
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
# target_net copy from policy_net
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
target_param.data.copy_(param.data)
@@ -103,7 +103,7 @@ class DoubleDQN:
# 所以tensor.max(1)[1]返回最大值对应的下标即action
action = q_value.max(1)[1].item()
else:
action = random.randrange(self.n_actions)
action = random.randrange(self.action_dim)
return action
def update(self):

View File

@@ -61,9 +61,9 @@ class PlotConfig:
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
env.seed(seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = DoubleDQN(n_states,n_actions,cfg)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = DoubleDQN(state_dim,action_dim,cfg)
return env,agent
cfg = DoubleDQNConfig()

View File

@@ -136,12 +136,12 @@
"outputs": [],
"source": [
"class DuelingNet(nn.Module):\n",
" def __init__(self, n_states, n_actions,hidden_size=128):\n",
" def __init__(self, state_dim, action_dim,hidden_size=128):\n",
" super(DuelingNet, self).__init__()\n",
" \n",
" # 隐藏层\n",
" self.hidden = nn.Sequential(\n",
" nn.Linear(n_states, hidden_size),\n",
" nn.Linear(state_dim, hidden_size),\n",
" nn.ReLU()\n",
" )\n",
" \n",
@@ -149,7 +149,7 @@
" self.advantage = nn.Sequential(\n",
" nn.Linear(hidden_size, hidden_size),\n",
" nn.ReLU(),\n",
" nn.Linear(hidden_size, n_actions)\n",
" nn.Linear(hidden_size, action_dim)\n",
" )\n",
" \n",
" # 价值函数\n",
@@ -192,7 +192,7 @@
],
"source": [
"class DuelingDQN:\n",
" def __init__(self,n_states,n_actions,cfg) -> None:\n",
" def __init__(self,state_dim,action_dim,cfg) -> None:\n",
" self.batch_size = cfg.batch_size\n",
" self.device = cfg.device\n",
" self.loss_history = [] # 记录loss的变化\n",
@@ -200,8 +200,8 @@
" self.epsilon = lambda frame_idx: cfg.epsilon_end + \\\n",
" (cfg.epsilon_start - cfg.epsilon_end) * \\\n",
" math.exp(-1. * frame_idx / cfg.epsilon_decay)\n",
" self.policy_net = DuelingNet(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)\n",
" self.target_net = DuelingNet(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)\n",
" self.policy_net = DuelingNet(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)\n",
" self.target_net = DuelingNet(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)\n",
" for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网络targe_net\n",
" target_param.data.copy_(param.data)\n",
" self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器\n",
@@ -214,7 +214,7 @@
" q_values = self.policy_net(state)\n",
" action = q_values.max(1)[1].item() # 选择Q值最大的动作\n",
" else:\n",
" action = random.randrange(self.n_actions)\n",
" action = random.randrange(self.action_dim)\n",
" return action\n",
" def update(self):\n",
" if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时不更新策略\n",

View File

@@ -42,7 +42,7 @@ class ReplayBuffer:
class MLP(nn.Module):
def __init__(self, input_dim,output_dim,hidden_dim=128):
""" 初始化q网络为全连接网络
input_dim: 输入的特征数即环境的状态
input_dim: 输入的特征数即环境的状态维度
output_dim: 输出的动作维度
"""
super(MLP, self).__init__()
@@ -57,16 +57,16 @@ class MLP(nn.Module):
return self.fc3(x)
class HierarchicalDQN:
def __init__(self,n_states,n_actions,cfg):
self.n_states = n_states
self.n_actions = n_actions
def __init__(self,state_dim,action_dim,cfg):
self.state_dim = state_dim
self.action_dim = action_dim
self.gamma = cfg.gamma
self.device = cfg.device
self.batch_size = cfg.batch_size
self.frame_idx = 0 # 用于epsilon的衰减计数
self.epsilon = lambda frame_idx: cfg.epsilon_end + (cfg.epsilon_start - cfg.epsilon_end ) * math.exp(-1. * frame_idx / cfg.epsilon_decay)
self.policy_net = MLP(2*n_states, n_actions,cfg.hidden_dim).to(self.device)
self.meta_policy_net = MLP(n_states, n_states,cfg.hidden_dim).to(self.device)
self.policy_net = MLP(2*state_dim, action_dim,cfg.hidden_dim).to(self.device)
self.meta_policy_net = MLP(state_dim, state_dim,cfg.hidden_dim).to(self.device)
self.optimizer = optim.Adam(self.policy_net.parameters(),lr=cfg.lr)
self.meta_optimizer = optim.Adam(self.meta_policy_net.parameters(),lr=cfg.lr)
self.memory = ReplayBuffer(cfg.memory_capacity)
@@ -76,7 +76,7 @@ class HierarchicalDQN:
self.losses = []
self.meta_losses = []
def to_onehot(self,x):
oh = np.zeros(self.n_states)
oh = np.zeros(self.state_dim)
oh[x - 1] = 1.
return oh
def set_goal(self,state):
@@ -85,7 +85,7 @@ class HierarchicalDQN:
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
goal = self.meta_policy_net(state).max(1)[1].item()
else:
goal = random.randrange(self.n_states)
goal = random.randrange(self.state_dim)
return goal
def choose_action(self,state):
self.frame_idx += 1
@@ -95,7 +95,7 @@ class HierarchicalDQN:
q_value = self.policy_net(state)
action = q_value.max(1)[1].item()
else:
action = random.randrange(self.n_actions)
action = random.randrange(self.action_dim)
return action
def update(self):
self.update_policy()

View File

@@ -63,9 +63,9 @@ class PlotConfig:
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
env.seed(seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = HierarchicalDQN(n_states,n_actions,cfg)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = HierarchicalDQN(state_dim,action_dim,cfg)
return env,agent
if __name__ == "__main__":

View File

@@ -17,11 +17,11 @@ import dill
class FisrtVisitMC:
''' On-Policy First-Visit MC Control
'''
def __init__(self,n_actions,cfg):
self.n_actions = n_actions
def __init__(self,action_dim,cfg):
self.action_dim = action_dim
self.epsilon = cfg.epsilon
self.gamma = cfg.gamma
self.Q_table = defaultdict(lambda: np.zeros(n_actions))
self.Q_table = defaultdict(lambda: np.zeros(action_dim))
self.returns_sum = defaultdict(float) # sum of returns
self.returns_count = defaultdict(float)
@@ -29,11 +29,11 @@ class FisrtVisitMC:
''' e-greed policy '''
if state in self.Q_table.keys():
best_action = np.argmax(self.Q_table[state])
action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions
action_probs = np.ones(self.action_dim, dtype=float) * self.epsilon / self.action_dim
action_probs[best_action] += (1.0 - self.epsilon)
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
else:
action = np.random.randint(0,self.n_actions)
action = np.random.randint(0,self.action_dim)
return action
def update(self,one_ep_transition):
# Find all (state, action) pairs we've visited in this one_ep_transition

View File

@@ -43,8 +43,8 @@ class MCConfig:
def env_agent_config(cfg,seed=1):
env = RacetrackEnv()
n_actions = 9
agent = FisrtVisitMC(n_actions, cfg)
action_dim = 9
agent = FisrtVisitMC(action_dim, cfg)
return env,agent
def train(cfg, env, agent):

View File

@@ -57,16 +57,16 @@ model就是actor和critic两个网络了
import torch.nn as nn
from torch.distributions.categorical import Categorical
class Actor(nn.Module):
def __init__(self,n_states, n_actions,
def __init__(self,state_dim, action_dim,
hidden_dim=256):
super(Actor, self).__init__()
self.actor = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, n_actions),
nn.Linear(hidden_dim, action_dim),
nn.Softmax(dim=-1)
)
def forward(self, state):
@@ -75,10 +75,10 @@ class Actor(nn.Module):
return dist
class Critic(nn.Module):
def __init__(self, n_states,hidden_dim=256):
def __init__(self, state_dim,hidden_dim=256):
super(Critic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
@@ -88,7 +88,7 @@ class Critic(nn.Module):
value = self.critic(state)
return value
```
这里Actor就是得到一个概率分布(Categorica也可以是别的分布可以搜索torch distributionsl)critc根据当前状态得到一个值这里的输入维度可以是```n_states+n_actions```即将action信息也纳入critic网络中这样会更好一些感兴趣的小伙伴可以试试。
这里Actor就是得到一个概率分布(Categorica也可以是别的分布可以搜索torch distributionsl)critc根据当前状态得到一个值这里的输入维度可以是```state_dim+action_dim```即将action信息也纳入critic网络中这样会更好一些感兴趣的小伙伴可以试试。
### PPO update
定义一个update函数主要实现伪代码中的第六步和第七步

View File

@@ -16,15 +16,15 @@ import torch.optim as optim
from PPO.model import Actor,Critic
from PPO.memory import PPOMemory
class PPO:
def __init__(self, n_states, n_actions,cfg):
def __init__(self, state_dim, action_dim,cfg):
self.gamma = cfg.gamma
self.continuous = cfg.continuous
self.policy_clip = cfg.policy_clip
self.n_epochs = cfg.n_epochs
self.gae_lambda = cfg.gae_lambda
self.device = cfg.device
self.actor = Actor(n_states, n_actions,cfg.hidden_dim).to(self.device)
self.critic = Critic(n_states,cfg.hidden_dim).to(self.device)
self.actor = Actor(state_dim, action_dim,cfg.hidden_dim).to(self.device)
self.critic = Critic(state_dim,cfg.hidden_dim).to(self.device)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.critic_lr)
self.memory = PPOMemory(cfg.batch_size)

View File

@@ -12,16 +12,16 @@ Environment:
import torch.nn as nn
from torch.distributions.categorical import Categorical
class Actor(nn.Module):
def __init__(self,n_states, n_actions,
def __init__(self,state_dim, action_dim,
hidden_dim):
super(Actor, self).__init__()
self.actor = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, n_actions),
nn.Linear(hidden_dim, action_dim),
nn.Softmax(dim=-1)
)
def forward(self, state):
@@ -30,10 +30,10 @@ class Actor(nn.Module):
return dist
class Critic(nn.Module):
def __init__(self, n_states,hidden_dim):
def __init__(self, state_dim,hidden_dim):
super(Critic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),

View File

@@ -45,9 +45,9 @@ class PlotConfig:
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
env.seed(seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = PPO(n_states,n_actions,cfg)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = PPO(state_dim,action_dim,cfg)
return env,agent
cfg = PPOConfig()

View File

@@ -45,9 +45,9 @@ class PlotConfig:
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
env.seed(seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
agent = PPO(n_states,n_actions,cfg)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
agent = PPO(state_dim,action_dim,cfg)
return env,agent

View File

@@ -90,9 +90,9 @@
"def env_agent_config(cfg,seed=1):\n",
" env = gym.make(cfg.env) \n",
" env.seed(seed)\n",
" n_states = env.observation_space.shape[0]\n",
" n_actions = env.action_space.n\n",
" agent = PPO(n_states,n_actions,cfg)\n",
" state_dim = env.observation_space.shape[0]\n",
" action_dim = env.action_space.n\n",
" agent = PPO(state_dim,action_dim,cfg)\n",
" return env,agent"
]
},

View File

@@ -99,9 +99,9 @@ if __name__ == '__main__':
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
env.seed(seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = PPO(n_states,n_actions,cfg)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = PPO(state_dim,action_dim,cfg)
return env,agent
cfg = PPOConfig()

View File

@@ -17,9 +17,9 @@ from PolicyGradient.model import MLP
class PolicyGradient:
def __init__(self, n_states,cfg):
def __init__(self, state_dim,cfg):
self.gamma = cfg.gamma
self.policy_net = MLP(n_states,hidden_dim=cfg.hidden_dim)
self.policy_net = MLP(state_dim,hidden_dim=cfg.hidden_dim)
self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=cfg.lr)
self.batch_size = cfg.batch_size

View File

@@ -19,7 +19,7 @@ class MLP(nn.Module):
'''
def __init__(self,input_dim,hidden_dim = 36):
super(MLP, self).__init__()
# 24和36为hidden layer的层数可根据input_dim, n_actions的情况来改变
# 24和36为hidden layer的层数可根据input_dim, action_dim的情况来改变
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim,hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1) # Prob of Left

View File

@@ -46,8 +46,8 @@ class PGConfig:
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env)
env.seed(seed)
n_states = env.observation_space.shape[0]
agent = PolicyGradient(n_states,cfg)
state_dim = env.observation_space.shape[0]
agent = PolicyGradient(state_dim,cfg)
return env,agent
def train(cfg,env,agent):

View File

@@ -15,9 +15,9 @@ import torch
from collections import defaultdict
class QLearning(object):
def __init__(self,n_states,
n_actions,cfg):
self.n_actions = n_actions
def __init__(self,state_dim,
action_dim,cfg):
self.action_dim = action_dim
self.lr = cfg.lr # 学习率
self.gamma = cfg.gamma
self.epsilon = 0
@@ -25,7 +25,7 @@ class QLearning(object):
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 用嵌套字典存放状态->动作->状态-动作值Q值的映射即Q表
self.Q_table = defaultdict(lambda: np.zeros(action_dim)) # 用嵌套字典存放状态->动作->状态-动作值Q值的映射即Q表
def choose_action(self, state):
self.sample_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
@@ -34,7 +34,7 @@ class QLearning(object):
if np.random.uniform(0, 1) > self.epsilon:
action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作
else:
action = np.random.choice(self.n_actions) # 随机选择动作
action = np.random.choice(self.action_dim) # 随机选择动作
return action
def predict(self,state):
action = np.argmax(self.Q_table[str(state)])

View File

@@ -38,9 +38,9 @@
"outputs": [],
"source": [
"class QLearning(object):\n",
" def __init__(self,n_states,\n",
" n_actions,cfg):\n",
" self.n_actions = n_actions \n",
" def __init__(self,state_dim,\n",
" action_dim,cfg):\n",
" self.action_dim = action_dim \n",
" self.lr = cfg.lr # 学习率\n",
" self.gamma = cfg.gamma \n",
" self.epsilon = 0 \n",
@@ -48,7 +48,7 @@
" self.epsilon_start = cfg.epsilon_start\n",
" self.epsilon_end = cfg.epsilon_end\n",
" self.epsilon_decay = cfg.epsilon_decay\n",
" self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 用嵌套字典存放状态->动作->状态-动作值Q值的映射即Q表\n",
" self.Q_table = defaultdict(lambda: np.zeros(action_dim)) # 用嵌套字典存放状态->动作->状态-动作值Q值的映射即Q表\n",
" def choose_action(self, state):\n",
" self.sample_count += 1\n",
" self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \\\n",
@@ -57,7 +57,7 @@
" if np.random.uniform(0, 1) > self.epsilon:\n",
" action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作\n",
" else:\n",
" action = np.random.choice(self.n_actions) # 随机选择动作\n",
" action = np.random.choice(self.action_dim) # 随机选择动作\n",
" return action\n",
" def predict(self,state):\n",
" action = np.argmax(self.Q_table[str(state)])\n",
@@ -238,9 +238,9 @@
" env = gym.make(cfg.env_name) \n",
" env = CliffWalkingWapper(env)\n",
" env.seed(seed) # 设置随机种子\n",
" n_states = env.observation_space.n # 状态维度\n",
" n_actions = env.action_space.n # 动作维度\n",
" agent = QLearning(n_states,n_actions,cfg)\n",
" state_dim = env.observation_space.n # 状态维度\n",
" action_dim = env.action_space.n # 动作维度\n",
" agent = QLearning(state_dim,action_dim,cfg)\n",
" return env,agent"
]
},

View File

@@ -68,9 +68,9 @@ def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
env = CliffWalkingWapper(env)
env.seed(seed) # 设置随机种子
n_states = env.observation_space.n # 状态维度
n_actions = env.action_space.n # 动作维度
agent = QLearning(n_states,n_actions,cfg)
state_dim = env.observation_space.n # 状态维度
action_dim = env.action_space.n # 动作维度
agent = QLearning(state_dim,action_dim,cfg)
return env,agent
cfg = QlearningConfig()

View File

@@ -14,17 +14,17 @@ from collections import defaultdict
import torch
class Sarsa(object):
def __init__(self,
n_actions,sarsa_cfg,):
self.n_actions = n_actions # number of actions
action_dim,sarsa_cfg,):
self.action_dim = action_dim # number of actions
self.lr = sarsa_cfg.lr # learning rate
self.gamma = sarsa_cfg.gamma
self.epsilon = sarsa_cfg.epsilon
self.Q = defaultdict(lambda: np.zeros(n_actions))
# self.Q = np.zeros((n_states, n_actions)) # Q表
self.Q = defaultdict(lambda: np.zeros(action_dim))
# self.Q = np.zeros((state_dim, action_dim)) # Q表
def choose_action(self, state):
best_action = np.argmax(self.Q[state])
# action = best_action
action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions
action_probs = np.ones(self.action_dim, dtype=float) * self.epsilon / self.action_dim
action_probs[best_action] += (1.0 - self.epsilon)
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
return action

View File

@@ -39,8 +39,8 @@ class SarsaConfig:
def env_agent_config(cfg,seed=1):
env = RacetrackEnv()
n_actions=9
agent = Sarsa(n_actions,cfg)
action_dim=9
agent = Sarsa(action_dim,cfg)
return env,agent
def train(cfg,env,agent):

View File

@@ -17,10 +17,10 @@ from torch.distributions import Normal
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
class ValueNet(nn.Module):
def __init__(self, n_states, hidden_dim, init_w=3e-3):
def __init__(self, state_dim, hidden_dim, init_w=3e-3):
super(ValueNet, self).__init__()
self.linear1 = nn.Linear(n_states, hidden_dim)
self.linear1 = nn.Linear(state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
@@ -35,10 +35,10 @@ class ValueNet(nn.Module):
class SoftQNet(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3):
super(SoftQNet, self).__init__()
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
self.linear1 = nn.Linear(state_dim + action_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
@@ -54,20 +54,20 @@ class SoftQNet(nn.Module):
class PolicyNet(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3, log_std_min=-20, log_std_max=2):
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3, log_std_min=-20, log_std_max=2):
super(PolicyNet, self).__init__()
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.linear1 = nn.Linear(n_states, hidden_dim)
self.linear1 = nn.Linear(state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.mean_linear = nn.Linear(hidden_dim, n_actions)
self.mean_linear = nn.Linear(hidden_dim, action_dim)
self.mean_linear.weight.data.uniform_(-init_w, init_w)
self.mean_linear.bias.data.uniform_(-init_w, init_w)
self.log_std_linear = nn.Linear(hidden_dim, n_actions)
self.log_std_linear = nn.Linear(hidden_dim, action_dim)
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
self.log_std_linear.bias.data.uniform_(-init_w, init_w)

View File

@@ -43,10 +43,10 @@ class ReplayBuffer:
return len(self.buffer)
class ValueNet(nn.Module):
def __init__(self, n_states, hidden_dim, init_w=3e-3):
def __init__(self, state_dim, hidden_dim, init_w=3e-3):
super(ValueNet, self).__init__()
self.linear1 = nn.Linear(n_states, hidden_dim)
self.linear1 = nn.Linear(state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
@@ -61,10 +61,10 @@ class ValueNet(nn.Module):
class SoftQNet(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3):
super(SoftQNet, self).__init__()
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
self.linear1 = nn.Linear(state_dim + action_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
@@ -80,20 +80,20 @@ class SoftQNet(nn.Module):
class PolicyNet(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3, log_std_min=-20, log_std_max=2):
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3, log_std_min=-20, log_std_max=2):
super(PolicyNet, self).__init__()
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.linear1 = nn.Linear(n_states, hidden_dim)
self.linear1 = nn.Linear(state_dim, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.mean_linear = nn.Linear(hidden_dim, n_actions)
self.mean_linear = nn.Linear(hidden_dim, action_dim)
self.mean_linear.weight.data.uniform_(-init_w, init_w)
self.mean_linear.bias.data.uniform_(-init_w, init_w)
self.log_std_linear = nn.Linear(hidden_dim, n_actions)
self.log_std_linear = nn.Linear(hidden_dim, action_dim)
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
self.log_std_linear.bias.data.uniform_(-init_w, init_w)
@@ -134,14 +134,14 @@ class PolicyNet(nn.Module):
return action[0]
class SAC:
def __init__(self,n_states,n_actions,cfg) -> None:
def __init__(self,state_dim,action_dim,cfg) -> None:
self.batch_size = cfg.batch_size
self.memory = ReplayBuffer(cfg.capacity)
self.device = cfg.device
self.value_net = ValueNet(n_states, cfg.hidden_dim).to(self.device)
self.target_value_net = ValueNet(n_states, cfg.hidden_dim).to(self.device)
self.soft_q_net = SoftQNet(n_states, n_actions, cfg.hidden_dim).to(self.device)
self.policy_net = PolicyNet(n_states, n_actions, cfg.hidden_dim).to(self.device)
self.value_net = ValueNet(state_dim, cfg.hidden_dim).to(self.device)
self.target_value_net = ValueNet(state_dim, cfg.hidden_dim).to(self.device)
self.soft_q_net = SoftQNet(state_dim, action_dim, cfg.hidden_dim).to(self.device)
self.policy_net = PolicyNet(state_dim, action_dim, cfg.hidden_dim).to(self.device)
self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=cfg.value_lr)
self.soft_q_optimizer = optim.Adam(self.soft_q_net.parameters(), lr=cfg.soft_q_lr)
self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.policy_lr)

View File

@@ -63,9 +63,9 @@ class PlotConfig:
def env_agent_config(cfg,seed=1):
env = NormalizedActions(gym.make(cfg.env_name))
env.seed(seed)
n_actions = env.action_space.shape[0]
n_states = env.observation_space.shape[0]
agent = SAC(n_states,n_actions,cfg)
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
agent = SAC(state_dim,action_dim,cfg)
return env,agent
def train(cfg,env,agent):

View File

@@ -70,9 +70,9 @@
"def env_agent_config(cfg,seed=1):\n",
" env = NormalizedActions(gym.make(\"Pendulum-v0\"))\n",
" env.seed(seed)\n",
" n_actions = env.action_space.shape[0]\n",
" n_states = env.observation_space.shape[0]\n",
" agent = SAC(n_states,n_actions,cfg)\n",
" action_dim = env.action_space.shape[0]\n",
" state_dim = env.observation_space.shape[0]\n",
" agent = SAC(state_dim,action_dim,cfg)\n",
" return env,agent"
]
},
@@ -159,7 +159,7 @@
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mDeprecatedEnv\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-7-91b1038013e4>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# train\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0menv\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0magent\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv_agent_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0mrewards\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mma_rewards\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0magent\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mmake_dir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m<ipython-input-4-040773221550>\u001b[0m in \u001b[0;36menv_agent_config\u001b[0;34m(cfg, seed)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0menv_agent_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0menv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNormalizedActions\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgym\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Pendulum-v0\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mn_actions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maction_space\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mn_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobservation_space\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m<ipython-input-4-040773221550>\u001b[0m in \u001b[0;36menv_agent_config\u001b[0;34m(cfg, seed)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0menv_agent_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0menv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNormalizedActions\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgym\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Pendulum-v0\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0maction_dim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maction_space\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mstate_dim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobservation_space\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mmake\u001b[0;34m(id, **kwargs)\u001b[0m\n\u001b[1;32m 233\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 234\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 235\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mregistry\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 236\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 237\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mmake\u001b[0;34m(self, path, **kwargs)\u001b[0m\n\u001b[1;32m 126\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Making new env: %s\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 128\u001b[0;31m \u001b[0mspec\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mspec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 129\u001b[0m \u001b[0menv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mspec\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mspec\u001b[0;34m(self, path)\u001b[0m\n\u001b[1;32m 185\u001b[0m raise error.DeprecatedEnv(\n\u001b[1;32m 186\u001b[0m \"Env {} not found (valid versions include {})\".format(\n\u001b[0;32m--> 187\u001b[0;31m \u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmatching_envs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 188\u001b[0m )\n\u001b[1;32m 189\u001b[0m )\n",

View File

@@ -21,8 +21,8 @@ class Actor(nn.Module):
'''[summary]
Args:
input_dim (int): 输入维度,这里等于n_states
output_dim (int): 输出维度,这里等于n_actions
input_dim (int): 输入维度这里等于state_dim
output_dim (int): 输出维度这里等于action_dim
max_action (int): action的最大值
'''
super(Actor, self).__init__()

View File

@@ -14,13 +14,13 @@ import torch
class ReplayBuffer(object):
def __init__(self, n_states, n_actions, max_size=int(1e6)):
def __init__(self, state_dim, action_dim, max_size=int(1e6)):
self.max_size = max_size
self.ptr = 0
self.size = 0
self.state = np.zeros((max_size, n_states))
self.action = np.zeros((max_size, n_actions))
self.next_state = np.zeros((max_size, n_states))
self.state = np.zeros((max_size, state_dim))
self.action = np.zeros((max_size, action_dim))
self.next_state = np.zeros((max_size, state_dim))
self.reward = np.zeros((max_size, 1))
self.not_done = np.zeros((max_size, 1))
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

View File

@@ -74,10 +74,10 @@ if __name__ == "__main__":
env.seed(cfg.seed) # Set seeds
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
td3= TD3(n_states,n_actions,max_action,cfg)
td3= TD3(state_dim,action_dim,max_action,cfg)
cfg.model_path = './TD3/results/HalfCheetah-v2/20210416-130341/models/'
td3.load(cfg.model_path)
td3_rewards,td3_ma_rewards = eval(cfg.env,td3,cfg.seed)

View File

@@ -72,7 +72,7 @@ def train(cfg,env,agent):
else:
action = (
agent.choose_action(np.array(state))
+ np.random.normal(0, max_action * cfg.expl_noise, size=n_actions)
+ np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
).clip(-max_action, max_action)
# Perform action
next_state, reward, done, _ = env.step(action)
@@ -121,11 +121,11 @@ def train(cfg,env,agent):
# else:
# action = (
# agent.choose_action(np.array(state))
# + np.random.normal(0, max_action * cfg.expl_noise, size=n_actions)
# + np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
# ).clip(-max_action, max_action)
# # action = (
# # agent.choose_action(np.array(state))
# # + np.random.normal(0, max_action * cfg.expl_noise, size=n_actions)
# # + np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
# # ).clip(-max_action, max_action)
# # Perform action
# next_state, reward, done, _ = env.step(action)
@@ -157,10 +157,10 @@ if __name__ == "__main__":
env.seed(cfg.seed) # Set seeds
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
agent = TD3(n_states,n_actions,max_action,cfg)
agent = TD3(state_dim,action_dim,max_action,cfg)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(cfg.result_path,cfg.model_path)
agent.save(path=cfg.model_path)

View File

@@ -70,10 +70,10 @@ if __name__ == "__main__":
env.seed(cfg.seed) # Set seeds
torch.manual_seed(cfg.seed)
np.random.seed(cfg.seed)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
td3= TD3(n_states,n_actions,max_action,cfg)
td3= TD3(state_dim,action_dim,max_action,cfg)
cfg.model_path = './TD3/results/Pendulum-v0/20210428-092059/models/'
cfg.result_path = './TD3/results/Pendulum-v0/20210428-092059/results/'
td3.load(cfg.model_path)

View File

@@ -79,7 +79,7 @@ def train(cfg,env,agent):
else:
action = (
agent.choose_action(np.array(state))
+ np.random.normal(0, max_action * cfg.expl_noise, size=n_actions)
+ np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
).clip(-max_action, max_action)
# Perform action
next_state, reward, done, _ = env.step(action)
@@ -109,10 +109,10 @@ if __name__ == "__main__":
env.seed(1) # 随机种子
torch.manual_seed(1)
np.random.seed(1)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
agent = TD3(n_states,n_actions,max_action,cfg)
agent = TD3(state_dim,action_dim,max_action,cfg)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(plot_cfg.result_path,plot_cfg.model_path)
agent.save(path=plot_cfg.model_path)

View File

@@ -17,7 +17,7 @@ from torch.distributions import Categorical
class MLP(nn.Module):
def __init__(self, input_dim,output_dim,hidden_dim=128):
""" 初始化q网络为全连接网络
input_dim: 输入的特征数即环境的状态
input_dim: 输入的特征数即环境的状态维度
output_dim: 输出的动作维度
"""
super(MLP, self).__init__()
@@ -32,10 +32,10 @@ class MLP(nn.Module):
return self.fc3(x)
class Critic(nn.Module):
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
def __init__(self, n_obs, action_dim, hidden_size, init_w=3e-3):
super(Critic, self).__init__()
self.linear1 = nn.Linear(n_obs + n_actions, hidden_size)
self.linear1 = nn.Linear(n_obs + action_dim, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, 1)
# 随机初始化为较小的值
@@ -51,11 +51,11 @@ class Critic(nn.Module):
return x
class Actor(nn.Module):
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
def __init__(self, n_obs, action_dim, hidden_size, init_w=3e-3):
super(Actor, self).__init__()
self.linear1 = nn.Linear(n_obs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, n_actions)
self.linear3 = nn.Linear(hidden_size, action_dim)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.linear3.bias.data.uniform_(-init_w, init_w)
@@ -67,18 +67,18 @@ class Actor(nn.Module):
return x
class ActorCritic(nn.Module):
def __init__(self, n_states, n_actions, hidden_dim=256):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(ActorCritic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
self.actor = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, n_actions),
nn.Linear(hidden_dim, action_dim),
nn.Softmax(dim=1),
)

View File

@@ -77,7 +77,7 @@ class BlackjackEnv(gym.Env):
self.natural = natural
# Start the first game
self._reset() # Number of
self.n_actions = 2
self.action_dim = 2
def reset(self):
return self._reset()

View File

@@ -31,7 +31,7 @@ class CliffWalkingEnv(discrete.DiscreteEnv):
self.shape = (4, 12)
nS = np.prod(self.shape)
n_actions = 4
action_dim = 4
# Cliff Location
self._cliff = np.zeros(self.shape, dtype=np.bool)
@@ -41,7 +41,7 @@ class CliffWalkingEnv(discrete.DiscreteEnv):
P = {}
for s in range(nS):
position = np.unravel_index(s, self.shape)
P[s] = { a : [] for a in range(n_actions) }
P[s] = { a : [] for a in range(action_dim) }
P[s][UP] = self._calculate_transition_prob(position, [-1, 0])
P[s][RIGHT] = self._calculate_transition_prob(position, [0, 1])
P[s][DOWN] = self._calculate_transition_prob(position, [1, 0])
@@ -51,7 +51,7 @@ class CliffWalkingEnv(discrete.DiscreteEnv):
isd = np.zeros(nS)
isd[np.ravel_multi_index((3,0), self.shape)] = 1.0
super(CliffWalkingEnv, self).__init__(nS, n_actions, P, isd)
super(CliffWalkingEnv, self).__init__(nS, action_dim, P, isd)
def render(self, mode='human', close=False):
self._render(mode, close)

View File

@@ -37,7 +37,7 @@ class GridworldEnv(discrete.DiscreteEnv):
self.shape = shape
nS = np.prod(shape)
n_actions = 4
action_dim = 4
MAX_Y = shape[0]
MAX_X = shape[1]
@@ -51,7 +51,7 @@ class GridworldEnv(discrete.DiscreteEnv):
y, x = it.multi_index
# P[s][a] = (prob, next_state, reward, is_done)
P[s] = {a : [] for a in range(n_actions)}
P[s] = {a : [] for a in range(action_dim)}
is_done = lambda s: s == 0 or s == (nS - 1)
reward = 0.0 if is_done(s) else -1.0
@@ -82,7 +82,7 @@ class GridworldEnv(discrete.DiscreteEnv):
# This should not be used in any model-free learning algorithm
self.P = P
super(GridworldEnv, self).__init__(nS, n_actions, P, isd)
super(GridworldEnv, self).__init__(nS, action_dim, P, isd)
def _render(self, mode='human', close=False):
""" Renders the current gridworld layout

View File

@@ -17,31 +17,31 @@ class StochasticMDP:
def __init__(self):
self.end = False
self.curr_state = 2
self.n_actions = 2
self.n_states = 6
self.action_dim = 2
self.state_dim = 6
self.p_right = 0.5
def reset(self):
self.end = False
self.curr_state = 2
state = np.zeros(self.n_states)
state = np.zeros(self.state_dim)
state[self.curr_state - 1] = 1.
return state
def step(self, action):
if self.curr_state != 1:
if action == 1:
if random.random() < self.p_right and self.curr_state < self.n_states:
if random.random() < self.p_right and self.curr_state < self.state_dim:
self.curr_state += 1
else:
self.curr_state -= 1
if action == 0:
self.curr_state -= 1
if self.curr_state == self.n_states:
if self.curr_state == self.state_dim:
self.end = True
state = np.zeros(self.n_states)
state = np.zeros(self.state_dim)
state[self.curr_state - 1] = 1.
if self.curr_state == 1:

View File

@@ -30,7 +30,7 @@ class WindyGridworldEnv(discrete.DiscreteEnv):
self.shape = (7, 10)
nS = np.prod(self.shape)
n_actions = 4
action_dim = 4
# Wind strength
winds = np.zeros(self.shape)
@@ -41,7 +41,7 @@ class WindyGridworldEnv(discrete.DiscreteEnv):
P = {}
for s in range(nS):
position = np.unravel_index(s, self.shape)
P[s] = { a : [] for a in range(n_actions) }
P[s] = { a : [] for a in range(action_dim) }
P[s][UP] = self._calculate_transition_prob(position, [-1, 0], winds)
P[s][RIGHT] = self._calculate_transition_prob(position, [0, 1], winds)
P[s][DOWN] = self._calculate_transition_prob(position, [1, 0], winds)
@@ -51,7 +51,7 @@ class WindyGridworldEnv(discrete.DiscreteEnv):
isd = np.zeros(nS)
isd[np.ravel_multi_index((3,0), self.shape)] = 1.0
super(WindyGridworldEnv, self).__init__(nS, n_actions, P, isd)
super(WindyGridworldEnv, self).__init__(nS, action_dim, P, isd)
def render(self, mode='human', close=False):
self._render(mode, close)