update codes
This commit is contained in:
@@ -40,10 +40,10 @@ class ActorCritic(nn.Module):
|
||||
class A2C:
|
||||
''' A2C算法
|
||||
'''
|
||||
def __init__(self,n_states,n_actions,cfg) -> None:
|
||||
def __init__(self,state_dim,action_dim,cfg) -> None:
|
||||
self.gamma = cfg.gamma
|
||||
self.device = cfg.device
|
||||
self.model = ActorCritic(n_states, n_actions, cfg.hidden_size).to(self.device)
|
||||
self.model = ActorCritic(state_dim, action_dim, cfg.hidden_size).to(self.device)
|
||||
self.optimizer = optim.Adam(self.model.parameters())
|
||||
|
||||
def compute_returns(self,next_value, rewards, masks):
|
||||
|
||||
@@ -74,9 +74,9 @@ def train(cfg,envs):
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
env = gym.make(cfg.env_name) # a single env
|
||||
env.seed(10)
|
||||
n_states = envs.observation_space.shape[0]
|
||||
n_actions = envs.action_space.n
|
||||
model = ActorCritic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||||
state_dim = envs.observation_space.shape[0]
|
||||
action_dim = envs.action_space.n
|
||||
model = ActorCritic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
|
||||
optimizer = optim.Adam(model.parameters())
|
||||
frame_idx = 0
|
||||
test_rewards = []
|
||||
|
||||
@@ -39,11 +39,11 @@ class ReplayBuffer:
|
||||
'''
|
||||
return len(self.buffer)
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
|
||||
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3):
|
||||
super(Actor, self).__init__()
|
||||
self.linear1 = nn.Linear(n_states, hidden_dim)
|
||||
self.linear1 = nn.Linear(state_dim, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, n_actions)
|
||||
self.linear3 = nn.Linear(hidden_dim, action_dim)
|
||||
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
@@ -54,10 +54,10 @@ class Actor(nn.Module):
|
||||
x = torch.tanh(self.linear3(x))
|
||||
return x
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
|
||||
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3):
|
||||
super(Critic, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
|
||||
self.linear1 = nn.Linear(state_dim + action_dim, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, 1)
|
||||
# 随机初始化为较小的值
|
||||
@@ -72,12 +72,12 @@ class Critic(nn.Module):
|
||||
x = self.linear3(x)
|
||||
return x
|
||||
class DDPG:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
def __init__(self, state_dim, action_dim, cfg):
|
||||
self.device = cfg.device
|
||||
self.critic = Critic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||||
self.actor = Actor(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||||
self.target_critic = Critic(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||||
self.target_actor = Actor(n_states, n_actions, cfg.hidden_dim).to(cfg.device)
|
||||
self.critic = Critic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
|
||||
self.actor = Actor(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
|
||||
self.target_critic = Critic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
|
||||
self.target_actor = Actor(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
|
||||
|
||||
# 复制参数到目标网络
|
||||
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
|
||||
|
||||
@@ -39,15 +39,15 @@ class OUNoise(object):
|
||||
self.max_sigma = max_sigma
|
||||
self.min_sigma = min_sigma
|
||||
self.decay_period = decay_period
|
||||
self.n_actions = action_space.shape[0]
|
||||
self.action_dim = action_space.shape[0]
|
||||
self.low = action_space.low
|
||||
self.high = action_space.high
|
||||
self.reset()
|
||||
def reset(self):
|
||||
self.obs = np.ones(self.n_actions) * self.mu
|
||||
self.obs = np.ones(self.action_dim) * self.mu
|
||||
def evolve_obs(self):
|
||||
x = self.obs
|
||||
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.n_actions)
|
||||
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.action_dim)
|
||||
self.obs = x + dx
|
||||
return self.obs
|
||||
def get_action(self, action, t=0):
|
||||
|
||||
@@ -58,9 +58,9 @@ class PlotConfig:
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声
|
||||
env.seed(seed) # 随机种子
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
agent = DDPG(n_states,n_actions,cfg)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.shape[0]
|
||||
agent = DDPG(state_dim,action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
cfg = DDPGConfig()
|
||||
|
||||
@@ -50,15 +50,15 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class FCN(nn.Module):
|
||||
def __init__(self, n_states=4, n_actions=18):
|
||||
def __init__(self, state_dim=4, action_dim=18):
|
||||
""" 初始化q网络,为全连接网络
|
||||
n_states: 输入的feature即环境的state数目
|
||||
n_actions: 输出的action总个数
|
||||
state_dim: 输入的feature即环境的state数目
|
||||
action_dim: 输出的action总个数
|
||||
"""
|
||||
super(FCN, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, 128) # 输入层
|
||||
self.fc1 = nn.Linear(state_dim, 128) # 输入层
|
||||
self.fc2 = nn.Linear(128, 128) # 隐藏层
|
||||
self.fc3 = nn.Linear(128, n_actions) # 输出层
|
||||
self.fc3 = nn.Linear(128, action_dim) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
@@ -66,7 +66,7 @@ class FCN(nn.Module):
|
||||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
```
|
||||
输入为n_states,输出为n_actions,包含一个128维度的隐藏层,这里根据需要可增加隐藏层维度和数量,然后一般使用relu激活函数,这里跟深度学习的网路设置是一样的。
|
||||
输入为state_dim,输出为action_dim,包含一个128维度的隐藏层,这里根据需要可增加隐藏层维度和数量,然后一般使用relu激活函数,这里跟深度学习的网路设置是一样的。
|
||||
|
||||
### Replay Buffer
|
||||
|
||||
@@ -107,8 +107,8 @@ class ReplayBuffer:
|
||||
在类中建立两个网络,以及optimizer和memory,
|
||||
|
||||
```python
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # copy params from policy net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
@@ -124,7 +124,7 @@ def choose_action(self, state):
|
||||
if random.random() > self.epsilon(self.frame_idx):
|
||||
action = self.predict(state)
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
```
|
||||
|
||||
|
||||
@@ -21,15 +21,15 @@ import math
|
||||
import numpy as np
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, n_states,n_actions,hidden_dim=128):
|
||||
def __init__(self, state_dim,action_dim,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
n_states: 输入的特征数即环境的状态数
|
||||
n_actions: 输出的动作维度
|
||||
state_dim: 输入的特征数即环境的状态维度
|
||||
action_dim: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
|
||||
self.fc1 = nn.Linear(state_dim, hidden_dim) # 输入层
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||||
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
|
||||
self.fc3 = nn.Linear(hidden_dim, action_dim) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
@@ -62,9 +62,9 @@ class ReplayBuffer:
|
||||
return len(self.buffer)
|
||||
|
||||
class DQN:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
def __init__(self, state_dim, action_dim, cfg):
|
||||
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
self.action_dim = action_dim # 总的动作个数
|
||||
self.device = cfg.device # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
# e-greedy策略相关参数
|
||||
@@ -73,8 +73,8 @@ class DQN:
|
||||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
|
||||
@@ -90,7 +90,7 @@ class DQN:
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||||
|
||||
@@ -70,9 +70,9 @@ class ReplayBuffer:
|
||||
return len(self.buffer)
|
||||
|
||||
class DQN:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
def __init__(self, state_dim, action_dim, cfg):
|
||||
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
self.action_dim = action_dim # 总的动作个数
|
||||
self.device = cfg.device # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma # 奖励的折扣因子
|
||||
# e-greedy策略相关参数
|
||||
@@ -81,8 +81,8 @@ class DQN:
|
||||
(cfg.epsilon_start - cfg.epsilon_end) * \
|
||||
math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = CNN(n_states, n_actions).to(self.device)
|
||||
self.target_net = CNN(n_states, n_actions).to(self.device)
|
||||
self.policy_net = CNN(state_dim, action_dim).to(self.device)
|
||||
self.target_net = CNN(state_dim, action_dim).to(self.device)
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net
|
||||
target_param.data.copy_(param.data)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器
|
||||
@@ -98,7 +98,7 @@ class DQN:
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略
|
||||
|
||||
@@ -7,23 +7,29 @@ sys.path.append(parent_path) # 添加路径到系统路径
|
||||
import gym
|
||||
import torch
|
||||
import datetime
|
||||
import numpy as np
|
||||
from common.utils import save_results, make_dir
|
||||
from common.utils import plot_rewards
|
||||
from DQN.dqn import DQN
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
algo_name = 'DQN' # 算法名称
|
||||
env_name = 'CartPole-v0' # 环境名称
|
||||
|
||||
class DQNConfig:
|
||||
|
||||
class Config:
|
||||
'''超参数
|
||||
'''
|
||||
|
||||
def __init__(self):
|
||||
self.algo_name = algo_name # 算法名称
|
||||
self.env_name = env_name # 环境名称
|
||||
################################## 环境超参数 ###################################
|
||||
self.algo_name = 'DQN' # 算法名称
|
||||
self.env_name = 'CartPole-v0' # 环境名称
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十
|
||||
self.train_eps = 200 # 训练的回合数
|
||||
self.test_eps = 30 # 测试的回合数
|
||||
# 超参数
|
||||
################################################################################
|
||||
|
||||
################################## 算法超参数 ###################################
|
||||
self.gamma = 0.95 # 强化学习中的折扣因子
|
||||
self.epsilon_start = 0.90 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
@@ -33,99 +39,106 @@ class DQNConfig:
|
||||
self.batch_size = 64 # mini-batch SGD中的批量大小
|
||||
self.target_update = 4 # 目标网络的更新频率
|
||||
self.hidden_dim = 256 # 网络隐藏层
|
||||
class PlotConfig:
|
||||
def __init__(self) -> None:
|
||||
self.algo = algo_name # 算法名称
|
||||
self.env_name = env_name # 环境名称
|
||||
self.device = torch.device(
|
||||
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
||||
################################################################################
|
||||
|
||||
################################# 保存结果相关参数 ################################
|
||||
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/results/' # 保存结果的路径
|
||||
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
||||
'/' + curr_time + '/models/' # 保存模型的路径
|
||||
self.save = True # 是否保存图片
|
||||
self.save = True # 是否保存图片
|
||||
################################################################################
|
||||
|
||||
|
||||
def env_agent_config(cfg, seed=1):
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.shape[0] # 状态数
|
||||
n_actions = env.action_space.n # 动作数
|
||||
agent = DQN(n_states, n_actions, cfg) # 创建智能体
|
||||
state_dim = env.observation_space.shape[0] # 状态维度
|
||||
action_dim = env.action_space.n # 动作维度
|
||||
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
|
||||
if seed !=0: # 设置随机种子
|
||||
torch.manual_seed(seed)
|
||||
env.seed(seed)
|
||||
np.random.seed(seed)
|
||||
return env, agent
|
||||
|
||||
|
||||
def train(cfg, env, agent):
|
||||
''' 训练
|
||||
'''
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
agent.memory.push(state, action, reward, next_state, done) # 保存transition
|
||||
state = next_state # 更新下一个状态
|
||||
agent.update() # 更新智能体
|
||||
ep_reward += reward # 累加奖励
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
agent.memory.push(state, action, reward,
|
||||
next_state, done) # 保存transition
|
||||
state = next_state # 更新下一个状态
|
||||
agent.update() # 更新智能体
|
||||
ep_reward += reward # 累加奖励
|
||||
if done:
|
||||
break
|
||||
if (i_ep+1) % cfg.target_update == 0: # 智能体目标网络更新
|
||||
if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
if (i_ep+1)%10 == 0:
|
||||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
|
||||
if (i_ep + 1) % 10 == 0:
|
||||
print('回合:{}/{}, 奖励:{}'.format(i_ep + 1, cfg.train_eps, ep_reward))
|
||||
print('完成训练!')
|
||||
return rewards, ma_rewards
|
||||
|
||||
def test(cfg,env,agent):
|
||||
|
||||
def test(cfg, env, agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0
|
||||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
|
||||
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.test_eps):
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
ep_reward = 0 # 记录一回合内的奖励
|
||||
state = env.reset() # 重置环境,返回初始状态
|
||||
while True:
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
state = next_state # 更新下一个状态
|
||||
ep_reward += reward # 累加奖励
|
||||
action = agent.choose_action(state) # 选择动作
|
||||
next_state, reward, done, _ = env.step(action) # 更新环境,返回transition
|
||||
state = next_state # 更新下一个状态
|
||||
ep_reward += reward # 累加奖励
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
|
||||
print('完成测试!')
|
||||
return rewards,ma_rewards
|
||||
return rewards, ma_rewards
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = DQNConfig()
|
||||
plot_cfg = PlotConfig()
|
||||
cfg = Config()
|
||||
# 训练
|
||||
env, agent = env_agent_config(cfg, seed=1)
|
||||
rewards, ma_rewards = train(cfg, env, agent)
|
||||
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=plot_cfg.model_path) # 保存模型
|
||||
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
|
||||
agent.save(path=cfg.model_path) # 保存模型
|
||||
save_results(rewards, ma_rewards, tag='train',
|
||||
path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
||||
path=cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果
|
||||
# 测试
|
||||
env, agent = env_agent_config(cfg, seed=10)
|
||||
agent.load(path=plot_cfg.model_path) # 导入模型
|
||||
agent.load(path=cfg.model_path) # 导入模型
|
||||
rewards, ma_rewards = test(cfg, env, agent)
|
||||
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果
|
||||
save_results(rewards, ma_rewards, tag='test',
|
||||
path=cfg.result_path) # 保存结果
|
||||
plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果
|
||||
|
||||
@@ -66,9 +66,9 @@ def env_agent_config(cfg, seed=1):
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.shape[0] # 状态数
|
||||
n_actions = env.action_space.n # 动作数
|
||||
agent = DQN(n_states, n_actions, cfg) # 创建智能体
|
||||
state_dim = env.observation_space.shape[0] # 状态维度
|
||||
action_dim = env.action_space.n # 动作维度
|
||||
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
|
||||
return env, agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
|
||||
@@ -68,9 +68,9 @@ def env_agent_config(cfg, seed=1):
|
||||
# env = wrap_deepmind(env)
|
||||
# env = wrap_pytorch(env)
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.shape[0] # 状态数
|
||||
n_actions = env.action_space.n # 动作数
|
||||
agent = DQN(n_states, n_actions, cfg) # 创建智能体
|
||||
state_dim = env.observation_space.shape[0] # 状态维度
|
||||
action_dim = env.action_space.n # 动作维度
|
||||
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
|
||||
return env, agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
|
||||
<img src="../../easy_rl_book/res/ch12/assets/pendulum_1.png" alt="image-20210915161550713" style="zoom:50%;" />
|
||||
|
||||
该环境的状态数有三个,设摆针竖直方向上的顺时针旋转角为$\theta$,$\theta$设在$[-\pi,\pi]$之间,则相应的状态为$[cos\theta,sin\theta,\dot{\theta}]$,即表示角度和角速度,我们的动作则是一个-2到2之间的力矩,它是一个连续量,因而该环境不能用离散动作的算法比如 DQN 来解决。关于奖励是根据相关的物理原理而计算出的等式,如下:
|
||||
该环境的状态维度有三个,设摆针竖直方向上的顺时针旋转角为$\theta$,$\theta$设在$[-\pi,\pi]$之间,则相应的状态为$[cos\theta,sin\theta,\dot{\theta}]$,即表示角度和角速度,我们的动作则是一个-2到2之间的力矩,它是一个连续量,因而该环境不能用离散动作的算法比如 DQN 来解决。关于奖励是根据相关的物理原理而计算出的等式,如下:
|
||||
$$
|
||||
-\left(\theta^{2}+0.1 * \hat{\theta}^{2}+0.001 * \text { action }^{2}\right)
|
||||
$$
|
||||
@@ -90,15 +90,15 @@ class OUNoise(object):
|
||||
self.max_sigma = max_sigma
|
||||
self.min_sigma = min_sigma
|
||||
self.decay_period = decay_period
|
||||
self.n_actions = action_space.shape[0]
|
||||
self.action_dim = action_space.shape[0]
|
||||
self.low = action_space.low
|
||||
self.high = action_space.high
|
||||
self.reset()
|
||||
def reset(self):
|
||||
self.obs = np.ones(self.n_actions) * self.mu
|
||||
self.obs = np.ones(self.action_dim) * self.mu
|
||||
def evolve_obs(self):
|
||||
x = self.obs
|
||||
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.n_actions)
|
||||
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.action_dim)
|
||||
self.obs = x + dx
|
||||
return self.obs
|
||||
def get_action(self, action, t=0):
|
||||
|
||||
@@ -14,21 +14,21 @@ CartPole-v0是一个经典的入门环境,如下图,它通过向左(动作=0
|
||||
import gym
|
||||
env = gym.make('CartPole-v0') # 建立环境
|
||||
env.seed(1) # 随机种子
|
||||
n_states = env.observation_space.shape[0] # 状态数
|
||||
n_actions = env.action_space.n # 动作数
|
||||
state_dim = env.observation_space.shape[0] # 状态维度
|
||||
action_dim = env.action_space.n # 动作维度
|
||||
state = env.reset() # 初始化环境
|
||||
print(f"状态数:{n_states},动作数:{n_actions}")
|
||||
print(f"状态维度:{state_dim},动作维度:{action_dim}")
|
||||
print(f"初始状态:{state}")
|
||||
```
|
||||
|
||||
可以得到结果:
|
||||
|
||||
```bash
|
||||
状态数:4,动作数:2
|
||||
状态维度:4,动作维度:2
|
||||
初始状态:[ 0.03073904 0.00145001 -0.03088818 -0.03131252]
|
||||
```
|
||||
|
||||
该环境状态数是四个,分别为车的位置、车的速度、杆的角度以及杆顶部的速度,动作数为两个,并且是离散的向左或者向右。理论上达到最优化算法的情况下,推车杆是一直能保持平衡的,也就是每回合的步数是无限,但是这不方便训练,所以环境内部设置了每回合的最大步数为200,也就是说理想情况下,只需要我们每回合的奖励达到200就算训练完成。
|
||||
该环境状态维度是四个,分别为车的位置、车的速度、杆的角度以及杆顶部的速度,动作维度为两个,并且是离散的向左或者向右。理论上达到最优化算法的情况下,推车杆是一直能保持平衡的,也就是每回合的步数是无限,但是这不方便训练,所以环境内部设置了每回合的最大步数为200,也就是说理想情况下,只需要我们每回合的奖励达到200就算训练完成。
|
||||
|
||||
## DQN基本接口
|
||||
|
||||
@@ -125,7 +125,7 @@ class ReplayBuffer:
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, input_dim,output_dim,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
input_dim: 输入的特征数即环境的状态数
|
||||
input_dim: 输入的特征数即环境的状态维度
|
||||
output_dim: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
@@ -157,7 +157,7 @@ def choose_action(self, state):
|
||||
q_values = self.policy_net(state)
|
||||
action = q_values.max(1)[1].item() # 选择Q值最大的动作
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
action = random.randrange(self.action_dim)
|
||||
```
|
||||
|
||||
可以看到跟Q学习算法其实是一样的,都是用的$\epsilon-greedy$策略,只是使用神经网络的话我们需要通过Torch或者Tensorflow工具来处理相应的数据。
|
||||
|
||||
@@ -27,21 +27,21 @@ env = gym.make('CliffWalking-v0') # 定义环境
|
||||
env = CliffWalkingWapper(env) # 装饰环境
|
||||
```
|
||||
|
||||
这里我们在程序中使用了一个装饰器重新定义环境,但不影响对环境的理解,感兴趣的同学具体看相关代码。可以由于gym环境封装得比较好,所以我们想要使用这个环境只需要使用gym.make命令输入函数名即可,然后我们可以查看环境的状态和动作数目:
|
||||
这里我们在程序中使用了一个装饰器重新定义环境,但不影响对环境的理解,感兴趣的同学具体看相关代码。可以由于gym环境封装得比较好,所以我们想要使用这个环境只需要使用gym.make命令输入函数名即可,然后我们可以查看环境的状态和动作维度目:
|
||||
|
||||
```python
|
||||
n_states = env.observation_space.n # 状态数
|
||||
n_actions = env.action_space.n # 动作数
|
||||
print(f"状态数:{n_states},动作数:{n_actions}")
|
||||
state_dim = env.observation_space.n # 状态维度
|
||||
action_dim = env.action_space.n # 动作维度
|
||||
print(f"状态维度:{state_dim},动作维度:{action_dim}")
|
||||
```
|
||||
|
||||
打印出来的结果如下:
|
||||
|
||||
```bash
|
||||
状态数:48,动作数:4
|
||||
状态维度:48,动作维度:4
|
||||
```
|
||||
|
||||
我们的状态数是48个,这里我们设置的是智能体当前所在网格的编号,而动作数是4,这表示有0,1,2,3对应着上下左右四个动作。另外我们也可以初始化环境并打印当前所在的状态:
|
||||
我们的状态维度是48个,这里我们设置的是智能体当前所在网格的编号,而动作维度是4,这表示有0,1,2,3对应着上下左右四个动作。另外我们也可以初始化环境并打印当前所在的状态:
|
||||
|
||||
```python
|
||||
state = env.reset()
|
||||
@@ -72,9 +72,9 @@ print(state)
|
||||
env = gym.make('CliffWalking-v0') # 定义环境
|
||||
env = CliffWalkingWapper(env) # 装饰环境
|
||||
env.seed(1) # 设置随机种子
|
||||
n_states = env.observation_space.n # 状态数
|
||||
n_actions = env.action_space.n # 动作数
|
||||
agent = QLearning(n_states,n_actions,cfg) # cfg存储算法相关参数
|
||||
state_dim = env.observation_space.n # 状态维度
|
||||
action_dim = env.action_space.n # 动作维度
|
||||
agent = QLearning(state_dim,action_dim,cfg) # cfg存储算法相关参数
|
||||
for i_ep in range(cfg.train_eps): # cfg.train_eps表示最大训练的回合数
|
||||
ep_reward = 0 # 记录每个回合的奖励
|
||||
state = env.reset() # 重置环境
|
||||
@@ -126,7 +126,7 @@ def choose_action(self, state):
|
||||
if np.random.uniform(0, 1) > self.epsilon:
|
||||
action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作
|
||||
else:
|
||||
action = np.random.choice(self.n_actions) # 随机选择动作
|
||||
action = np.random.choice(self.action_dim) # 随机选择动作
|
||||
return action
|
||||
```
|
||||
|
||||
|
||||
@@ -46,15 +46,15 @@ class ReplayBuffer:
|
||||
return len(self.buffer)
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, n_states,n_actions,hidden_dim=128):
|
||||
def __init__(self, state_dim,action_dim,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
n_states: 输入的特征数即环境的状态数
|
||||
n_actions: 输出的动作维度
|
||||
state_dim: 输入的特征数即环境的状态维度
|
||||
action_dim: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层
|
||||
self.fc1 = nn.Linear(state_dim, hidden_dim) # 输入层
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层
|
||||
self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层
|
||||
self.fc3 = nn.Linear(hidden_dim, action_dim) # 输出层
|
||||
|
||||
def forward(self, x):
|
||||
# 各层对应的激活函数
|
||||
@@ -63,8 +63,8 @@ class MLP(nn.Module):
|
||||
return self.fc3(x)
|
||||
|
||||
class DoubleDQN:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
self.n_actions = n_actions # 总的动作个数
|
||||
def __init__(self, state_dim, action_dim, cfg):
|
||||
self.action_dim = action_dim # 总的动作个数
|
||||
self.device = cfg.device # 设备,cpu或gpu等
|
||||
self.gamma = cfg.gamma
|
||||
# e-greedy策略相关参数
|
||||
@@ -73,8 +73,8 @@ class DoubleDQN:
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.batch_size = cfg.batch_size
|
||||
self.policy_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
|
||||
# target_net copy from policy_net
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
@@ -103,7 +103,7 @@ class DoubleDQN:
|
||||
# 所以tensor.max(1)[1]返回最大值对应的下标,即action
|
||||
action = q_value.max(1)[1].item()
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
def update(self):
|
||||
|
||||
|
||||
@@ -61,9 +61,9 @@ class PlotConfig:
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env_name)
|
||||
env.seed(seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = DoubleDQN(n_states,n_actions,cfg)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.n
|
||||
agent = DoubleDQN(state_dim,action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
cfg = DoubleDQNConfig()
|
||||
|
||||
@@ -136,12 +136,12 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class DuelingNet(nn.Module):\n",
|
||||
" def __init__(self, n_states, n_actions,hidden_size=128):\n",
|
||||
" def __init__(self, state_dim, action_dim,hidden_size=128):\n",
|
||||
" super(DuelingNet, self).__init__()\n",
|
||||
" \n",
|
||||
" # 隐藏层\n",
|
||||
" self.hidden = nn.Sequential(\n",
|
||||
" nn.Linear(n_states, hidden_size),\n",
|
||||
" nn.Linear(state_dim, hidden_size),\n",
|
||||
" nn.ReLU()\n",
|
||||
" )\n",
|
||||
" \n",
|
||||
@@ -149,7 +149,7 @@
|
||||
" self.advantage = nn.Sequential(\n",
|
||||
" nn.Linear(hidden_size, hidden_size),\n",
|
||||
" nn.ReLU(),\n",
|
||||
" nn.Linear(hidden_size, n_actions)\n",
|
||||
" nn.Linear(hidden_size, action_dim)\n",
|
||||
" )\n",
|
||||
" \n",
|
||||
" # 价值函数\n",
|
||||
@@ -192,7 +192,7 @@
|
||||
],
|
||||
"source": [
|
||||
"class DuelingDQN:\n",
|
||||
" def __init__(self,n_states,n_actions,cfg) -> None:\n",
|
||||
" def __init__(self,state_dim,action_dim,cfg) -> None:\n",
|
||||
" self.batch_size = cfg.batch_size\n",
|
||||
" self.device = cfg.device\n",
|
||||
" self.loss_history = [] # 记录loss的变化\n",
|
||||
@@ -200,8 +200,8 @@
|
||||
" self.epsilon = lambda frame_idx: cfg.epsilon_end + \\\n",
|
||||
" (cfg.epsilon_start - cfg.epsilon_end) * \\\n",
|
||||
" math.exp(-1. * frame_idx / cfg.epsilon_decay)\n",
|
||||
" self.policy_net = DuelingNet(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)\n",
|
||||
" self.target_net = DuelingNet(n_states, n_actions,hidden_dim=cfg.hidden_dim).to(self.device)\n",
|
||||
" self.policy_net = DuelingNet(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)\n",
|
||||
" self.target_net = DuelingNet(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)\n",
|
||||
" for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网络targe_net\n",
|
||||
" target_param.data.copy_(param.data)\n",
|
||||
" self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器\n",
|
||||
@@ -214,7 +214,7 @@
|
||||
" q_values = self.policy_net(state)\n",
|
||||
" action = q_values.max(1)[1].item() # 选择Q值最大的动作\n",
|
||||
" else:\n",
|
||||
" action = random.randrange(self.n_actions)\n",
|
||||
" action = random.randrange(self.action_dim)\n",
|
||||
" return action\n",
|
||||
" def update(self):\n",
|
||||
" if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略\n",
|
||||
|
||||
@@ -42,7 +42,7 @@ class ReplayBuffer:
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, input_dim,output_dim,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
input_dim: 输入的特征数即环境的状态数
|
||||
input_dim: 输入的特征数即环境的状态维度
|
||||
output_dim: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
@@ -57,16 +57,16 @@ class MLP(nn.Module):
|
||||
return self.fc3(x)
|
||||
|
||||
class HierarchicalDQN:
|
||||
def __init__(self,n_states,n_actions,cfg):
|
||||
self.n_states = n_states
|
||||
self.n_actions = n_actions
|
||||
def __init__(self,state_dim,action_dim,cfg):
|
||||
self.state_dim = state_dim
|
||||
self.action_dim = action_dim
|
||||
self.gamma = cfg.gamma
|
||||
self.device = cfg.device
|
||||
self.batch_size = cfg.batch_size
|
||||
self.frame_idx = 0 # 用于epsilon的衰减计数
|
||||
self.epsilon = lambda frame_idx: cfg.epsilon_end + (cfg.epsilon_start - cfg.epsilon_end ) * math.exp(-1. * frame_idx / cfg.epsilon_decay)
|
||||
self.policy_net = MLP(2*n_states, n_actions,cfg.hidden_dim).to(self.device)
|
||||
self.meta_policy_net = MLP(n_states, n_states,cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = MLP(2*state_dim, action_dim,cfg.hidden_dim).to(self.device)
|
||||
self.meta_policy_net = MLP(state_dim, state_dim,cfg.hidden_dim).to(self.device)
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(),lr=cfg.lr)
|
||||
self.meta_optimizer = optim.Adam(self.meta_policy_net.parameters(),lr=cfg.lr)
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||
@@ -76,7 +76,7 @@ class HierarchicalDQN:
|
||||
self.losses = []
|
||||
self.meta_losses = []
|
||||
def to_onehot(self,x):
|
||||
oh = np.zeros(self.n_states)
|
||||
oh = np.zeros(self.state_dim)
|
||||
oh[x - 1] = 1.
|
||||
return oh
|
||||
def set_goal(self,state):
|
||||
@@ -85,7 +85,7 @@ class HierarchicalDQN:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0)
|
||||
goal = self.meta_policy_net(state).max(1)[1].item()
|
||||
else:
|
||||
goal = random.randrange(self.n_states)
|
||||
goal = random.randrange(self.state_dim)
|
||||
return goal
|
||||
def choose_action(self,state):
|
||||
self.frame_idx += 1
|
||||
@@ -95,7 +95,7 @@ class HierarchicalDQN:
|
||||
q_value = self.policy_net(state)
|
||||
action = q_value.max(1)[1].item()
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
action = random.randrange(self.action_dim)
|
||||
return action
|
||||
def update(self):
|
||||
self.update_policy()
|
||||
|
||||
@@ -63,9 +63,9 @@ class PlotConfig:
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env_name)
|
||||
env.seed(seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = HierarchicalDQN(n_states,n_actions,cfg)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.n
|
||||
agent = HierarchicalDQN(state_dim,action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -17,11 +17,11 @@ import dill
|
||||
class FisrtVisitMC:
|
||||
''' On-Policy First-Visit MC Control
|
||||
'''
|
||||
def __init__(self,n_actions,cfg):
|
||||
self.n_actions = n_actions
|
||||
def __init__(self,action_dim,cfg):
|
||||
self.action_dim = action_dim
|
||||
self.epsilon = cfg.epsilon
|
||||
self.gamma = cfg.gamma
|
||||
self.Q_table = defaultdict(lambda: np.zeros(n_actions))
|
||||
self.Q_table = defaultdict(lambda: np.zeros(action_dim))
|
||||
self.returns_sum = defaultdict(float) # sum of returns
|
||||
self.returns_count = defaultdict(float)
|
||||
|
||||
@@ -29,11 +29,11 @@ class FisrtVisitMC:
|
||||
''' e-greed policy '''
|
||||
if state in self.Q_table.keys():
|
||||
best_action = np.argmax(self.Q_table[state])
|
||||
action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions
|
||||
action_probs = np.ones(self.action_dim, dtype=float) * self.epsilon / self.action_dim
|
||||
action_probs[best_action] += (1.0 - self.epsilon)
|
||||
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
|
||||
else:
|
||||
action = np.random.randint(0,self.n_actions)
|
||||
action = np.random.randint(0,self.action_dim)
|
||||
return action
|
||||
def update(self,one_ep_transition):
|
||||
# Find all (state, action) pairs we've visited in this one_ep_transition
|
||||
|
||||
@@ -43,8 +43,8 @@ class MCConfig:
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = RacetrackEnv()
|
||||
n_actions = 9
|
||||
agent = FisrtVisitMC(n_actions, cfg)
|
||||
action_dim = 9
|
||||
agent = FisrtVisitMC(action_dim, cfg)
|
||||
return env,agent
|
||||
|
||||
def train(cfg, env, agent):
|
||||
|
||||
@@ -57,16 +57,16 @@ model就是actor和critic两个网络了:
|
||||
import torch.nn as nn
|
||||
from torch.distributions.categorical import Categorical
|
||||
class Actor(nn.Module):
|
||||
def __init__(self,n_states, n_actions,
|
||||
def __init__(self,state_dim, action_dim,
|
||||
hidden_dim=256):
|
||||
super(Actor, self).__init__()
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, n_actions),
|
||||
nn.Linear(hidden_dim, action_dim),
|
||||
nn.Softmax(dim=-1)
|
||||
)
|
||||
def forward(self, state):
|
||||
@@ -75,10 +75,10 @@ class Actor(nn.Module):
|
||||
return dist
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_states,hidden_dim=256):
|
||||
def __init__(self, state_dim,hidden_dim=256):
|
||||
super(Critic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
@@ -88,7 +88,7 @@ class Critic(nn.Module):
|
||||
value = self.critic(state)
|
||||
return value
|
||||
```
|
||||
这里Actor就是得到一个概率分布(Categorica,也可以是别的分布,可以搜索torch distributionsl),critc根据当前状态得到一个值,这里的输入维度可以是```n_states+n_actions```,即将action信息也纳入critic网络中,这样会更好一些,感兴趣的小伙伴可以试试。
|
||||
这里Actor就是得到一个概率分布(Categorica,也可以是别的分布,可以搜索torch distributionsl),critc根据当前状态得到一个值,这里的输入维度可以是```state_dim+action_dim```,即将action信息也纳入critic网络中,这样会更好一些,感兴趣的小伙伴可以试试。
|
||||
|
||||
### PPO update
|
||||
定义一个update函数主要实现伪代码中的第六步和第七步:
|
||||
|
||||
@@ -16,15 +16,15 @@ import torch.optim as optim
|
||||
from PPO.model import Actor,Critic
|
||||
from PPO.memory import PPOMemory
|
||||
class PPO:
|
||||
def __init__(self, n_states, n_actions,cfg):
|
||||
def __init__(self, state_dim, action_dim,cfg):
|
||||
self.gamma = cfg.gamma
|
||||
self.continuous = cfg.continuous
|
||||
self.policy_clip = cfg.policy_clip
|
||||
self.n_epochs = cfg.n_epochs
|
||||
self.gae_lambda = cfg.gae_lambda
|
||||
self.device = cfg.device
|
||||
self.actor = Actor(n_states, n_actions,cfg.hidden_dim).to(self.device)
|
||||
self.critic = Critic(n_states,cfg.hidden_dim).to(self.device)
|
||||
self.actor = Actor(state_dim, action_dim,cfg.hidden_dim).to(self.device)
|
||||
self.critic = Critic(state_dim,cfg.hidden_dim).to(self.device)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
|
||||
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.critic_lr)
|
||||
self.memory = PPOMemory(cfg.batch_size)
|
||||
|
||||
@@ -12,16 +12,16 @@ Environment:
|
||||
import torch.nn as nn
|
||||
from torch.distributions.categorical import Categorical
|
||||
class Actor(nn.Module):
|
||||
def __init__(self,n_states, n_actions,
|
||||
def __init__(self,state_dim, action_dim,
|
||||
hidden_dim):
|
||||
super(Actor, self).__init__()
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, n_actions),
|
||||
nn.Linear(hidden_dim, action_dim),
|
||||
nn.Softmax(dim=-1)
|
||||
)
|
||||
def forward(self, state):
|
||||
@@ -30,10 +30,10 @@ class Actor(nn.Module):
|
||||
return dist
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_states,hidden_dim):
|
||||
def __init__(self, state_dim,hidden_dim):
|
||||
super(Critic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
|
||||
@@ -45,9 +45,9 @@ class PlotConfig:
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env_name)
|
||||
env.seed(seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = PPO(n_states,n_actions,cfg)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.n
|
||||
agent = PPO(state_dim,action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
cfg = PPOConfig()
|
||||
|
||||
@@ -45,9 +45,9 @@ class PlotConfig:
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env_name)
|
||||
env.seed(seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
agent = PPO(n_states,n_actions,cfg)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.shape[0]
|
||||
agent = PPO(state_dim,action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
|
||||
|
||||
@@ -90,9 +90,9 @@
|
||||
"def env_agent_config(cfg,seed=1):\n",
|
||||
" env = gym.make(cfg.env) \n",
|
||||
" env.seed(seed)\n",
|
||||
" n_states = env.observation_space.shape[0]\n",
|
||||
" n_actions = env.action_space.n\n",
|
||||
" agent = PPO(n_states,n_actions,cfg)\n",
|
||||
" state_dim = env.observation_space.shape[0]\n",
|
||||
" action_dim = env.action_space.n\n",
|
||||
" agent = PPO(state_dim,action_dim,cfg)\n",
|
||||
" return env,agent"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -99,9 +99,9 @@ if __name__ == '__main__':
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env_name)
|
||||
env.seed(seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.n
|
||||
agent = PPO(n_states,n_actions,cfg)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.n
|
||||
agent = PPO(state_dim,action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
cfg = PPOConfig()
|
||||
|
||||
@@ -17,9 +17,9 @@ from PolicyGradient.model import MLP
|
||||
|
||||
class PolicyGradient:
|
||||
|
||||
def __init__(self, n_states,cfg):
|
||||
def __init__(self, state_dim,cfg):
|
||||
self.gamma = cfg.gamma
|
||||
self.policy_net = MLP(n_states,hidden_dim=cfg.hidden_dim)
|
||||
self.policy_net = MLP(state_dim,hidden_dim=cfg.hidden_dim)
|
||||
self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=cfg.lr)
|
||||
self.batch_size = cfg.batch_size
|
||||
|
||||
|
||||
@@ -19,7 +19,7 @@ class MLP(nn.Module):
|
||||
'''
|
||||
def __init__(self,input_dim,hidden_dim = 36):
|
||||
super(MLP, self).__init__()
|
||||
# 24和36为hidden layer的层数,可根据input_dim, n_actions的情况来改变
|
||||
# 24和36为hidden layer的层数,可根据input_dim, action_dim的情况来改变
|
||||
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
||||
self.fc2 = nn.Linear(hidden_dim,hidden_dim)
|
||||
self.fc3 = nn.Linear(hidden_dim, 1) # Prob of Left
|
||||
|
||||
@@ -46,8 +46,8 @@ class PGConfig:
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
agent = PolicyGradient(n_states,cfg)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
agent = PolicyGradient(state_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
def train(cfg,env,agent):
|
||||
|
||||
@@ -15,9 +15,9 @@ import torch
|
||||
from collections import defaultdict
|
||||
|
||||
class QLearning(object):
|
||||
def __init__(self,n_states,
|
||||
n_actions,cfg):
|
||||
self.n_actions = n_actions
|
||||
def __init__(self,state_dim,
|
||||
action_dim,cfg):
|
||||
self.action_dim = action_dim
|
||||
self.lr = cfg.lr # 学习率
|
||||
self.gamma = cfg.gamma
|
||||
self.epsilon = 0
|
||||
@@ -25,7 +25,7 @@ class QLearning(object):
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 用嵌套字典存放状态->动作->状态-动作值(Q值)的映射,即Q表
|
||||
self.Q_table = defaultdict(lambda: np.zeros(action_dim)) # 用嵌套字典存放状态->动作->状态-动作值(Q值)的映射,即Q表
|
||||
def choose_action(self, state):
|
||||
self.sample_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
@@ -34,7 +34,7 @@ class QLearning(object):
|
||||
if np.random.uniform(0, 1) > self.epsilon:
|
||||
action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作
|
||||
else:
|
||||
action = np.random.choice(self.n_actions) # 随机选择动作
|
||||
action = np.random.choice(self.action_dim) # 随机选择动作
|
||||
return action
|
||||
def predict(self,state):
|
||||
action = np.argmax(self.Q_table[str(state)])
|
||||
|
||||
@@ -38,9 +38,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class QLearning(object):\n",
|
||||
" def __init__(self,n_states,\n",
|
||||
" n_actions,cfg):\n",
|
||||
" self.n_actions = n_actions \n",
|
||||
" def __init__(self,state_dim,\n",
|
||||
" action_dim,cfg):\n",
|
||||
" self.action_dim = action_dim \n",
|
||||
" self.lr = cfg.lr # 学习率\n",
|
||||
" self.gamma = cfg.gamma \n",
|
||||
" self.epsilon = 0 \n",
|
||||
@@ -48,7 +48,7 @@
|
||||
" self.epsilon_start = cfg.epsilon_start\n",
|
||||
" self.epsilon_end = cfg.epsilon_end\n",
|
||||
" self.epsilon_decay = cfg.epsilon_decay\n",
|
||||
" self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 用嵌套字典存放状态->动作->状态-动作值(Q值)的映射,即Q表\n",
|
||||
" self.Q_table = defaultdict(lambda: np.zeros(action_dim)) # 用嵌套字典存放状态->动作->状态-动作值(Q值)的映射,即Q表\n",
|
||||
" def choose_action(self, state):\n",
|
||||
" self.sample_count += 1\n",
|
||||
" self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \\\n",
|
||||
@@ -57,7 +57,7 @@
|
||||
" if np.random.uniform(0, 1) > self.epsilon:\n",
|
||||
" action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作\n",
|
||||
" else:\n",
|
||||
" action = np.random.choice(self.n_actions) # 随机选择动作\n",
|
||||
" action = np.random.choice(self.action_dim) # 随机选择动作\n",
|
||||
" return action\n",
|
||||
" def predict(self,state):\n",
|
||||
" action = np.argmax(self.Q_table[str(state)])\n",
|
||||
@@ -238,9 +238,9 @@
|
||||
" env = gym.make(cfg.env_name) \n",
|
||||
" env = CliffWalkingWapper(env)\n",
|
||||
" env.seed(seed) # 设置随机种子\n",
|
||||
" n_states = env.observation_space.n # 状态维度\n",
|
||||
" n_actions = env.action_space.n # 动作维度\n",
|
||||
" agent = QLearning(n_states,n_actions,cfg)\n",
|
||||
" state_dim = env.observation_space.n # 状态维度\n",
|
||||
" action_dim = env.action_space.n # 动作维度\n",
|
||||
" agent = QLearning(state_dim,action_dim,cfg)\n",
|
||||
" return env,agent"
|
||||
]
|
||||
},
|
||||
|
||||
@@ -68,9 +68,9 @@ def env_agent_config(cfg,seed=1):
|
||||
env = gym.make(cfg.env_name)
|
||||
env = CliffWalkingWapper(env)
|
||||
env.seed(seed) # 设置随机种子
|
||||
n_states = env.observation_space.n # 状态维度
|
||||
n_actions = env.action_space.n # 动作维度
|
||||
agent = QLearning(n_states,n_actions,cfg)
|
||||
state_dim = env.observation_space.n # 状态维度
|
||||
action_dim = env.action_space.n # 动作维度
|
||||
agent = QLearning(state_dim,action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
cfg = QlearningConfig()
|
||||
|
||||
@@ -14,17 +14,17 @@ from collections import defaultdict
|
||||
import torch
|
||||
class Sarsa(object):
|
||||
def __init__(self,
|
||||
n_actions,sarsa_cfg,):
|
||||
self.n_actions = n_actions # number of actions
|
||||
action_dim,sarsa_cfg,):
|
||||
self.action_dim = action_dim # number of actions
|
||||
self.lr = sarsa_cfg.lr # learning rate
|
||||
self.gamma = sarsa_cfg.gamma
|
||||
self.epsilon = sarsa_cfg.epsilon
|
||||
self.Q = defaultdict(lambda: np.zeros(n_actions))
|
||||
# self.Q = np.zeros((n_states, n_actions)) # Q表
|
||||
self.Q = defaultdict(lambda: np.zeros(action_dim))
|
||||
# self.Q = np.zeros((state_dim, action_dim)) # Q表
|
||||
def choose_action(self, state):
|
||||
best_action = np.argmax(self.Q[state])
|
||||
# action = best_action
|
||||
action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions
|
||||
action_probs = np.ones(self.action_dim, dtype=float) * self.epsilon / self.action_dim
|
||||
action_probs[best_action] += (1.0 - self.epsilon)
|
||||
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
|
||||
return action
|
||||
|
||||
@@ -39,8 +39,8 @@ class SarsaConfig:
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = RacetrackEnv()
|
||||
n_actions=9
|
||||
agent = Sarsa(n_actions,cfg)
|
||||
action_dim=9
|
||||
agent = Sarsa(action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
def train(cfg,env,agent):
|
||||
|
||||
@@ -17,10 +17,10 @@ from torch.distributions import Normal
|
||||
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
class ValueNet(nn.Module):
|
||||
def __init__(self, n_states, hidden_dim, init_w=3e-3):
|
||||
def __init__(self, state_dim, hidden_dim, init_w=3e-3):
|
||||
super(ValueNet, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_states, hidden_dim)
|
||||
self.linear1 = nn.Linear(state_dim, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, 1)
|
||||
|
||||
@@ -35,10 +35,10 @@ class ValueNet(nn.Module):
|
||||
|
||||
|
||||
class SoftQNet(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
|
||||
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3):
|
||||
super(SoftQNet, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
|
||||
self.linear1 = nn.Linear(state_dim + action_dim, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, 1)
|
||||
|
||||
@@ -54,20 +54,20 @@ class SoftQNet(nn.Module):
|
||||
|
||||
|
||||
class PolicyNet(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3, log_std_min=-20, log_std_max=2):
|
||||
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3, log_std_min=-20, log_std_max=2):
|
||||
super(PolicyNet, self).__init__()
|
||||
|
||||
self.log_std_min = log_std_min
|
||||
self.log_std_max = log_std_max
|
||||
|
||||
self.linear1 = nn.Linear(n_states, hidden_dim)
|
||||
self.linear1 = nn.Linear(state_dim, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
|
||||
self.mean_linear = nn.Linear(hidden_dim, n_actions)
|
||||
self.mean_linear = nn.Linear(hidden_dim, action_dim)
|
||||
self.mean_linear.weight.data.uniform_(-init_w, init_w)
|
||||
self.mean_linear.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
self.log_std_linear = nn.Linear(hidden_dim, n_actions)
|
||||
self.log_std_linear = nn.Linear(hidden_dim, action_dim)
|
||||
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
|
||||
self.log_std_linear.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
|
||||
@@ -43,10 +43,10 @@ class ReplayBuffer:
|
||||
return len(self.buffer)
|
||||
|
||||
class ValueNet(nn.Module):
|
||||
def __init__(self, n_states, hidden_dim, init_w=3e-3):
|
||||
def __init__(self, state_dim, hidden_dim, init_w=3e-3):
|
||||
super(ValueNet, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_states, hidden_dim)
|
||||
self.linear1 = nn.Linear(state_dim, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, 1)
|
||||
|
||||
@@ -61,10 +61,10 @@ class ValueNet(nn.Module):
|
||||
|
||||
|
||||
class SoftQNet(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
|
||||
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3):
|
||||
super(SoftQNet, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
|
||||
self.linear1 = nn.Linear(state_dim + action_dim, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, 1)
|
||||
|
||||
@@ -80,20 +80,20 @@ class SoftQNet(nn.Module):
|
||||
|
||||
|
||||
class PolicyNet(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3, log_std_min=-20, log_std_max=2):
|
||||
def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3, log_std_min=-20, log_std_max=2):
|
||||
super(PolicyNet, self).__init__()
|
||||
|
||||
self.log_std_min = log_std_min
|
||||
self.log_std_max = log_std_max
|
||||
|
||||
self.linear1 = nn.Linear(n_states, hidden_dim)
|
||||
self.linear1 = nn.Linear(state_dim, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
|
||||
self.mean_linear = nn.Linear(hidden_dim, n_actions)
|
||||
self.mean_linear = nn.Linear(hidden_dim, action_dim)
|
||||
self.mean_linear.weight.data.uniform_(-init_w, init_w)
|
||||
self.mean_linear.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
self.log_std_linear = nn.Linear(hidden_dim, n_actions)
|
||||
self.log_std_linear = nn.Linear(hidden_dim, action_dim)
|
||||
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
|
||||
self.log_std_linear.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
@@ -134,14 +134,14 @@ class PolicyNet(nn.Module):
|
||||
return action[0]
|
||||
|
||||
class SAC:
|
||||
def __init__(self,n_states,n_actions,cfg) -> None:
|
||||
def __init__(self,state_dim,action_dim,cfg) -> None:
|
||||
self.batch_size = cfg.batch_size
|
||||
self.memory = ReplayBuffer(cfg.capacity)
|
||||
self.device = cfg.device
|
||||
self.value_net = ValueNet(n_states, cfg.hidden_dim).to(self.device)
|
||||
self.target_value_net = ValueNet(n_states, cfg.hidden_dim).to(self.device)
|
||||
self.soft_q_net = SoftQNet(n_states, n_actions, cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = PolicyNet(n_states, n_actions, cfg.hidden_dim).to(self.device)
|
||||
self.value_net = ValueNet(state_dim, cfg.hidden_dim).to(self.device)
|
||||
self.target_value_net = ValueNet(state_dim, cfg.hidden_dim).to(self.device)
|
||||
self.soft_q_net = SoftQNet(state_dim, action_dim, cfg.hidden_dim).to(self.device)
|
||||
self.policy_net = PolicyNet(state_dim, action_dim, cfg.hidden_dim).to(self.device)
|
||||
self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=cfg.value_lr)
|
||||
self.soft_q_optimizer = optim.Adam(self.soft_q_net.parameters(), lr=cfg.soft_q_lr)
|
||||
self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.policy_lr)
|
||||
|
||||
@@ -63,9 +63,9 @@ class PlotConfig:
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = NormalizedActions(gym.make(cfg.env_name))
|
||||
env.seed(seed)
|
||||
n_actions = env.action_space.shape[0]
|
||||
n_states = env.observation_space.shape[0]
|
||||
agent = SAC(n_states,n_actions,cfg)
|
||||
action_dim = env.action_space.shape[0]
|
||||
state_dim = env.observation_space.shape[0]
|
||||
agent = SAC(state_dim,action_dim,cfg)
|
||||
return env,agent
|
||||
|
||||
def train(cfg,env,agent):
|
||||
|
||||
@@ -70,9 +70,9 @@
|
||||
"def env_agent_config(cfg,seed=1):\n",
|
||||
" env = NormalizedActions(gym.make(\"Pendulum-v0\"))\n",
|
||||
" env.seed(seed)\n",
|
||||
" n_actions = env.action_space.shape[0]\n",
|
||||
" n_states = env.observation_space.shape[0]\n",
|
||||
" agent = SAC(n_states,n_actions,cfg)\n",
|
||||
" action_dim = env.action_space.shape[0]\n",
|
||||
" state_dim = env.observation_space.shape[0]\n",
|
||||
" agent = SAC(state_dim,action_dim,cfg)\n",
|
||||
" return env,agent"
|
||||
]
|
||||
},
|
||||
@@ -159,7 +159,7 @@
|
||||
"\nDuring handling of the above exception, another exception occurred:\n",
|
||||
"\u001b[0;31mDeprecatedEnv\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-7-91b1038013e4>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# train\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0menv\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0magent\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv_agent_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0mrewards\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mma_rewards\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0magent\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mmake_dir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcfg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m<ipython-input-4-040773221550>\u001b[0m in \u001b[0;36menv_agent_config\u001b[0;34m(cfg, seed)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0menv_agent_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0menv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNormalizedActions\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgym\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Pendulum-v0\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mn_actions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maction_space\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mn_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobservation_space\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m<ipython-input-4-040773221550>\u001b[0m in \u001b[0;36menv_agent_config\u001b[0;34m(cfg, seed)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0menv_agent_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcfg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0menv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNormalizedActions\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgym\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Pendulum-v0\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0maction_dim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maction_space\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mstate_dim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobservation_space\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mmake\u001b[0;34m(id, **kwargs)\u001b[0m\n\u001b[1;32m 233\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 234\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 235\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mregistry\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 236\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 237\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mmake\u001b[0;34m(self, path, **kwargs)\u001b[0m\n\u001b[1;32m 126\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 127\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Making new env: %s\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 128\u001b[0;31m \u001b[0mspec\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mspec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 129\u001b[0m \u001b[0menv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mspec\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0menv\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/anaconda3/envs/py37/lib/python3.7/site-packages/gym/envs/registration.py\u001b[0m in \u001b[0;36mspec\u001b[0;34m(self, path)\u001b[0m\n\u001b[1;32m 185\u001b[0m raise error.DeprecatedEnv(\n\u001b[1;32m 186\u001b[0m \"Env {} not found (valid versions include {})\".format(\n\u001b[0;32m--> 187\u001b[0;31m \u001b[0mid\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmatching_envs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 188\u001b[0m )\n\u001b[1;32m 189\u001b[0m )\n",
|
||||
|
||||
@@ -21,8 +21,8 @@ class Actor(nn.Module):
|
||||
'''[summary]
|
||||
|
||||
Args:
|
||||
input_dim (int): 输入维度,这里等于n_states
|
||||
output_dim (int): 输出维度,这里等于n_actions
|
||||
input_dim (int): 输入维度,这里等于state_dim
|
||||
output_dim (int): 输出维度,这里等于action_dim
|
||||
max_action (int): action的最大值
|
||||
'''
|
||||
super(Actor, self).__init__()
|
||||
|
||||
@@ -14,13 +14,13 @@ import torch
|
||||
|
||||
|
||||
class ReplayBuffer(object):
|
||||
def __init__(self, n_states, n_actions, max_size=int(1e6)):
|
||||
def __init__(self, state_dim, action_dim, max_size=int(1e6)):
|
||||
self.max_size = max_size
|
||||
self.ptr = 0
|
||||
self.size = 0
|
||||
self.state = np.zeros((max_size, n_states))
|
||||
self.action = np.zeros((max_size, n_actions))
|
||||
self.next_state = np.zeros((max_size, n_states))
|
||||
self.state = np.zeros((max_size, state_dim))
|
||||
self.action = np.zeros((max_size, action_dim))
|
||||
self.next_state = np.zeros((max_size, state_dim))
|
||||
self.reward = np.zeros((max_size, 1))
|
||||
self.not_done = np.zeros((max_size, 1))
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
@@ -74,10 +74,10 @@ if __name__ == "__main__":
|
||||
env.seed(cfg.seed) # Set seeds
|
||||
torch.manual_seed(cfg.seed)
|
||||
np.random.seed(cfg.seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.shape[0]
|
||||
max_action = float(env.action_space.high[0])
|
||||
td3= TD3(n_states,n_actions,max_action,cfg)
|
||||
td3= TD3(state_dim,action_dim,max_action,cfg)
|
||||
cfg.model_path = './TD3/results/HalfCheetah-v2/20210416-130341/models/'
|
||||
td3.load(cfg.model_path)
|
||||
td3_rewards,td3_ma_rewards = eval(cfg.env,td3,cfg.seed)
|
||||
|
||||
@@ -72,7 +72,7 @@ def train(cfg,env,agent):
|
||||
else:
|
||||
action = (
|
||||
agent.choose_action(np.array(state))
|
||||
+ np.random.normal(0, max_action * cfg.expl_noise, size=n_actions)
|
||||
+ np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
|
||||
).clip(-max_action, max_action)
|
||||
# Perform action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
@@ -121,11 +121,11 @@ def train(cfg,env,agent):
|
||||
# else:
|
||||
# action = (
|
||||
# agent.choose_action(np.array(state))
|
||||
# + np.random.normal(0, max_action * cfg.expl_noise, size=n_actions)
|
||||
# + np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
|
||||
# ).clip(-max_action, max_action)
|
||||
# # action = (
|
||||
# # agent.choose_action(np.array(state))
|
||||
# # + np.random.normal(0, max_action * cfg.expl_noise, size=n_actions)
|
||||
# # + np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
|
||||
# # ).clip(-max_action, max_action)
|
||||
# # Perform action
|
||||
# next_state, reward, done, _ = env.step(action)
|
||||
@@ -157,10 +157,10 @@ if __name__ == "__main__":
|
||||
env.seed(cfg.seed) # Set seeds
|
||||
torch.manual_seed(cfg.seed)
|
||||
np.random.seed(cfg.seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.shape[0]
|
||||
max_action = float(env.action_space.high[0])
|
||||
agent = TD3(n_states,n_actions,max_action,cfg)
|
||||
agent = TD3(state_dim,action_dim,max_action,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
agent.save(path=cfg.model_path)
|
||||
|
||||
@@ -70,10 +70,10 @@ if __name__ == "__main__":
|
||||
env.seed(cfg.seed) # Set seeds
|
||||
torch.manual_seed(cfg.seed)
|
||||
np.random.seed(cfg.seed)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.shape[0]
|
||||
max_action = float(env.action_space.high[0])
|
||||
td3= TD3(n_states,n_actions,max_action,cfg)
|
||||
td3= TD3(state_dim,action_dim,max_action,cfg)
|
||||
cfg.model_path = './TD3/results/Pendulum-v0/20210428-092059/models/'
|
||||
cfg.result_path = './TD3/results/Pendulum-v0/20210428-092059/results/'
|
||||
td3.load(cfg.model_path)
|
||||
|
||||
@@ -79,7 +79,7 @@ def train(cfg,env,agent):
|
||||
else:
|
||||
action = (
|
||||
agent.choose_action(np.array(state))
|
||||
+ np.random.normal(0, max_action * cfg.expl_noise, size=n_actions)
|
||||
+ np.random.normal(0, max_action * cfg.expl_noise, size=action_dim)
|
||||
).clip(-max_action, max_action)
|
||||
# Perform action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
@@ -109,10 +109,10 @@ if __name__ == "__main__":
|
||||
env.seed(1) # 随机种子
|
||||
torch.manual_seed(1)
|
||||
np.random.seed(1)
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.shape[0]
|
||||
max_action = float(env.action_space.high[0])
|
||||
agent = TD3(n_states,n_actions,max_action,cfg)
|
||||
agent = TD3(state_dim,action_dim,max_action,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(plot_cfg.result_path,plot_cfg.model_path)
|
||||
agent.save(path=plot_cfg.model_path)
|
||||
|
||||
@@ -17,7 +17,7 @@ from torch.distributions import Categorical
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, input_dim,output_dim,hidden_dim=128):
|
||||
""" 初始化q网络,为全连接网络
|
||||
input_dim: 输入的特征数即环境的状态数
|
||||
input_dim: 输入的特征数即环境的状态维度
|
||||
output_dim: 输出的动作维度
|
||||
"""
|
||||
super(MLP, self).__init__()
|
||||
@@ -32,10 +32,10 @@ class MLP(nn.Module):
|
||||
return self.fc3(x)
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
|
||||
def __init__(self, n_obs, action_dim, hidden_size, init_w=3e-3):
|
||||
super(Critic, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_obs + n_actions, hidden_size)
|
||||
self.linear1 = nn.Linear(n_obs + action_dim, hidden_size)
|
||||
self.linear2 = nn.Linear(hidden_size, hidden_size)
|
||||
self.linear3 = nn.Linear(hidden_size, 1)
|
||||
# 随机初始化为较小的值
|
||||
@@ -51,11 +51,11 @@ class Critic(nn.Module):
|
||||
return x
|
||||
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
|
||||
def __init__(self, n_obs, action_dim, hidden_size, init_w=3e-3):
|
||||
super(Actor, self).__init__()
|
||||
self.linear1 = nn.Linear(n_obs, hidden_size)
|
||||
self.linear2 = nn.Linear(hidden_size, hidden_size)
|
||||
self.linear3 = nn.Linear(hidden_size, n_actions)
|
||||
self.linear3 = nn.Linear(hidden_size, action_dim)
|
||||
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
@@ -67,18 +67,18 @@ class Actor(nn.Module):
|
||||
return x
|
||||
|
||||
class ActorCritic(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim=256):
|
||||
def __init__(self, state_dim, action_dim, hidden_dim=256):
|
||||
super(ActorCritic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, n_actions),
|
||||
nn.Linear(hidden_dim, action_dim),
|
||||
nn.Softmax(dim=1),
|
||||
)
|
||||
|
||||
|
||||
@@ -77,7 +77,7 @@ class BlackjackEnv(gym.Env):
|
||||
self.natural = natural
|
||||
# Start the first game
|
||||
self._reset() # Number of
|
||||
self.n_actions = 2
|
||||
self.action_dim = 2
|
||||
|
||||
def reset(self):
|
||||
return self._reset()
|
||||
|
||||
@@ -31,7 +31,7 @@ class CliffWalkingEnv(discrete.DiscreteEnv):
|
||||
self.shape = (4, 12)
|
||||
|
||||
nS = np.prod(self.shape)
|
||||
n_actions = 4
|
||||
action_dim = 4
|
||||
|
||||
# Cliff Location
|
||||
self._cliff = np.zeros(self.shape, dtype=np.bool)
|
||||
@@ -41,7 +41,7 @@ class CliffWalkingEnv(discrete.DiscreteEnv):
|
||||
P = {}
|
||||
for s in range(nS):
|
||||
position = np.unravel_index(s, self.shape)
|
||||
P[s] = { a : [] for a in range(n_actions) }
|
||||
P[s] = { a : [] for a in range(action_dim) }
|
||||
P[s][UP] = self._calculate_transition_prob(position, [-1, 0])
|
||||
P[s][RIGHT] = self._calculate_transition_prob(position, [0, 1])
|
||||
P[s][DOWN] = self._calculate_transition_prob(position, [1, 0])
|
||||
@@ -51,7 +51,7 @@ class CliffWalkingEnv(discrete.DiscreteEnv):
|
||||
isd = np.zeros(nS)
|
||||
isd[np.ravel_multi_index((3,0), self.shape)] = 1.0
|
||||
|
||||
super(CliffWalkingEnv, self).__init__(nS, n_actions, P, isd)
|
||||
super(CliffWalkingEnv, self).__init__(nS, action_dim, P, isd)
|
||||
|
||||
def render(self, mode='human', close=False):
|
||||
self._render(mode, close)
|
||||
|
||||
@@ -37,7 +37,7 @@ class GridworldEnv(discrete.DiscreteEnv):
|
||||
self.shape = shape
|
||||
|
||||
nS = np.prod(shape)
|
||||
n_actions = 4
|
||||
action_dim = 4
|
||||
|
||||
MAX_Y = shape[0]
|
||||
MAX_X = shape[1]
|
||||
@@ -51,7 +51,7 @@ class GridworldEnv(discrete.DiscreteEnv):
|
||||
y, x = it.multi_index
|
||||
|
||||
# P[s][a] = (prob, next_state, reward, is_done)
|
||||
P[s] = {a : [] for a in range(n_actions)}
|
||||
P[s] = {a : [] for a in range(action_dim)}
|
||||
|
||||
is_done = lambda s: s == 0 or s == (nS - 1)
|
||||
reward = 0.0 if is_done(s) else -1.0
|
||||
@@ -82,7 +82,7 @@ class GridworldEnv(discrete.DiscreteEnv):
|
||||
# This should not be used in any model-free learning algorithm
|
||||
self.P = P
|
||||
|
||||
super(GridworldEnv, self).__init__(nS, n_actions, P, isd)
|
||||
super(GridworldEnv, self).__init__(nS, action_dim, P, isd)
|
||||
|
||||
def _render(self, mode='human', close=False):
|
||||
""" Renders the current gridworld layout
|
||||
|
||||
@@ -17,31 +17,31 @@ class StochasticMDP:
|
||||
def __init__(self):
|
||||
self.end = False
|
||||
self.curr_state = 2
|
||||
self.n_actions = 2
|
||||
self.n_states = 6
|
||||
self.action_dim = 2
|
||||
self.state_dim = 6
|
||||
self.p_right = 0.5
|
||||
|
||||
def reset(self):
|
||||
self.end = False
|
||||
self.curr_state = 2
|
||||
state = np.zeros(self.n_states)
|
||||
state = np.zeros(self.state_dim)
|
||||
state[self.curr_state - 1] = 1.
|
||||
return state
|
||||
|
||||
def step(self, action):
|
||||
if self.curr_state != 1:
|
||||
if action == 1:
|
||||
if random.random() < self.p_right and self.curr_state < self.n_states:
|
||||
if random.random() < self.p_right and self.curr_state < self.state_dim:
|
||||
self.curr_state += 1
|
||||
else:
|
||||
self.curr_state -= 1
|
||||
|
||||
if action == 0:
|
||||
self.curr_state -= 1
|
||||
if self.curr_state == self.n_states:
|
||||
if self.curr_state == self.state_dim:
|
||||
self.end = True
|
||||
|
||||
state = np.zeros(self.n_states)
|
||||
state = np.zeros(self.state_dim)
|
||||
state[self.curr_state - 1] = 1.
|
||||
|
||||
if self.curr_state == 1:
|
||||
|
||||
@@ -30,7 +30,7 @@ class WindyGridworldEnv(discrete.DiscreteEnv):
|
||||
self.shape = (7, 10)
|
||||
|
||||
nS = np.prod(self.shape)
|
||||
n_actions = 4
|
||||
action_dim = 4
|
||||
|
||||
# Wind strength
|
||||
winds = np.zeros(self.shape)
|
||||
@@ -41,7 +41,7 @@ class WindyGridworldEnv(discrete.DiscreteEnv):
|
||||
P = {}
|
||||
for s in range(nS):
|
||||
position = np.unravel_index(s, self.shape)
|
||||
P[s] = { a : [] for a in range(n_actions) }
|
||||
P[s] = { a : [] for a in range(action_dim) }
|
||||
P[s][UP] = self._calculate_transition_prob(position, [-1, 0], winds)
|
||||
P[s][RIGHT] = self._calculate_transition_prob(position, [0, 1], winds)
|
||||
P[s][DOWN] = self._calculate_transition_prob(position, [1, 0], winds)
|
||||
@@ -51,7 +51,7 @@ class WindyGridworldEnv(discrete.DiscreteEnv):
|
||||
isd = np.zeros(nS)
|
||||
isd[np.ravel_multi_index((3,0), self.shape)] = 1.0
|
||||
|
||||
super(WindyGridworldEnv, self).__init__(nS, n_actions, P, isd)
|
||||
super(WindyGridworldEnv, self).__init__(nS, action_dim, P, isd)
|
||||
|
||||
def render(self, mode='human', close=False):
|
||||
self._render(mode, close)
|
||||
|
||||
Reference in New Issue
Block a user