175 lines
8.8 KiB
Markdown
175 lines
8.8 KiB
Markdown
前面项目讲的环境都是离散动作的,但实际中也有很多连续动作的环境,比如Open AI Gym中的[Pendulum-v0](https://github.com/openai/gym/wiki/Pendulum-v0)环境,它解决的是一个倒立摆问题,我们先对该环境做一个简要说明。
|
||
|
||
## Pendulum-v0简介
|
||
|
||
如果说 CartPole-v0 是一个离散动作的经典入门环境的话,那么对应 Pendulum-v0 就是连续动作的经典入门环境,如下图,我们通过施加力矩使其向上摆动并保持直立。
|
||
|
||
<img src="../../easy_rl_book/res/ch12/assets/pendulum_1.png" alt="image-20210915161550713" style="zoom:50%;" />
|
||
|
||
该环境的状态维度有三个,设摆针竖直方向上的顺时针旋转角为$\theta$,$\theta$设在$[-\pi,\pi]$之间,则相应的状态为$[cos\theta,sin\theta,\dot{\theta}]$,即表示角度和角速度,我们的动作则是一个-2到2之间的力矩,它是一个连续量,因而该环境不能用离散动作的算法比如 DQN 来解决。关于奖励是根据相关的物理原理而计算出的等式,如下:
|
||
$$
|
||
-\left(\theta^{2}+0.1 * \hat{\theta}^{2}+0.001 * \text { action }^{2}\right)
|
||
$$
|
||
对于每一步,其最低奖励为$-\left(\pi^{2}+0.1 * 8^{2}+0.001 * 2^{2}\right)= -16.2736044$,最高奖励为0。同 CartPole-v0 环境一样,达到最优算法的情况下,每回合的步数是无限的,因此这里设定每回合最大步数为200以便于训练。
|
||
|
||
## DDPG 基本接口
|
||
|
||
我们依然使用接口的概念,通过伪代码分析并实现 DDPG 的训练模式,如下:
|
||
|
||
> 初始化评论家网络$Q\left(s, a \mid \theta^{Q}\right)$和演员网络$\mu\left(s \mid \theta^{\mu}\right)$,其权重分别为$\theta^{Q}$和$\theta^{\mu}$
|
||
>
|
||
> 初始化目标网络$Q'$和$\mu'$,并复制权重$\theta^{Q^{\prime}} \leftarrow \theta^{Q}, \theta^{\mu^{\prime}} \leftarrow \theta^{\mu}$
|
||
>
|
||
> 初始化经验回放缓冲区$R$
|
||
>
|
||
> 执行$M$个回合循环,对于每个回合:
|
||
>
|
||
> * 初始化动作探索的的随机过程即噪声$\mathcal{N}$
|
||
>
|
||
> * 初始化状态$s_1$
|
||
>
|
||
> 循环$T$个时间步长,对于每个时步$
|
||
>
|
||
> * 根据当前策略和噪声选择动作$a_{t}=\mu\left(s_{t} \mid \theta^{\mu}\right)+\mathcal{N}_{t}$
|
||
> * 执行动作$a_t$并得到反馈$r_t$和下一个状态$s_{t+1}$
|
||
> * 存储转移$\left(s_{t}, a_{t}, r_{t}, s_{t+1}\right)$到经验缓冲$R$中
|
||
> * (更新策略)从$D$随机采样一个小批量的转移
|
||
> * (更新策略)计算实际的Q值$y_{i}=r_{i}+\gamma Q^{\prime}\left(s_{i+1}, \mu^{\prime}\left(s_{i+1} \mid \theta^{\mu^{\prime}}\right) \mid \theta^{Q^{\prime}}\right)$
|
||
> * (更新策略)对损失函数$L=\frac{1}{N} \sum_{i}\left(y_{i}-Q\left(s_{i}, a_{i} \mid \theta^{Q}\right)\right)^{2}$关于参数$\theta$做梯度下降用于更新评论家网络
|
||
> * (更新策略)使用采样梯度更新演员网络的策略:$\left.\left.\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q\left(s, a \mid \theta^{Q}\right)\right|_{s=s_{i}, a=\mu\left(s_{i}\right)} \nabla_{\theta^{\mu}} \mu\left(s \mid \theta^{\mu}\right)\right|_{s_{i}}$
|
||
> * (更新策略)更新目标网络:$\theta^{Q^{\prime}} \leftarrow \tau \theta^{Q}+(1-\tau) \theta^{Q^{\prime}}$,$\theta^{\mu^{\prime}} \leftarrow \tau \theta^{\mu}+(1-\tau) \theta^{\mu^{\prime}}$
|
||
|
||
代码如下:
|
||
|
||
```python
|
||
ou_noise = OUNoise(env.action_space) # 动作噪声
|
||
rewards = [] # 记录奖励
|
||
ma_rewards = [] # 记录滑动平均奖励
|
||
for i_ep in range(cfg.train_eps):
|
||
state = env.reset()
|
||
ou_noise.reset()
|
||
done = False
|
||
ep_reward = 0
|
||
i_step = 0
|
||
while not done:
|
||
i_step += 1
|
||
action = agent.choose_action(state)
|
||
action = ou_noise.get_action(action, i_step)
|
||
next_state, reward, done, _ = env.step(action)
|
||
ep_reward += reward
|
||
agent.memory.push(state, action, reward, next_state, done)
|
||
agent.update()
|
||
state = next_state
|
||
if (i_ep+1)%10 == 0:
|
||
print('回合:{}/{},奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
|
||
rewards.append(ep_reward)
|
||
if ma_rewards:
|
||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||
else:
|
||
ma_rewards.append(ep_reward)
|
||
```
|
||
|
||
相比于 DQN ,DDPG 主要多了两处修改,一个是给动作施加噪声,另外一个是软更新策略,即最后一步。
|
||
|
||
## Ornstein-Uhlenbeck噪声
|
||
|
||
OU 噪声适用于惯性系统,尤其是时间离散化粒度较小的情况。 OU 噪声是一种随机过程,下面略去证明,直接给出公式:
|
||
$$
|
||
x(t+\Delta t)=x(t)-\theta(x(t)-\mu) \Delta t+\sigma W_t
|
||
$$
|
||
其中 $W_t$ 属于正太分布,进而代码实现如下:
|
||
|
||
```python
|
||
class OUNoise(object):
|
||
'''Ornstein–Uhlenbeck噪声
|
||
'''
|
||
def __init__(self, action_space, mu=0.0, theta=0.15, max_sigma=0.3, min_sigma=0.3, decay_period=100000):
|
||
self.mu = mu # OU噪声的参数
|
||
self.theta = theta # OU噪声的参数
|
||
self.sigma = max_sigma # OU噪声的参数
|
||
self.max_sigma = max_sigma
|
||
self.min_sigma = min_sigma
|
||
self.decay_period = decay_period
|
||
self.action_dim = action_space.shape[0]
|
||
self.low = action_space.low
|
||
self.high = action_space.high
|
||
self.reset()
|
||
def reset(self):
|
||
self.obs = np.ones(self.action_dim) * self.mu
|
||
def evolve_obs(self):
|
||
x = self.obs
|
||
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.action_dim)
|
||
self.obs = x + dx
|
||
return self.obs
|
||
def get_action(self, action, t=0):
|
||
ou_obs = self.evolve_obs()
|
||
self.sigma = self.max_sigma - (self.max_sigma - self.min_sigma) * min(1.0, t / self.decay_period) # sigma会逐渐衰减
|
||
return np.clip(action + ou_obs, self.low, self.high) # 动作加上噪声后进行剪切
|
||
```
|
||
|
||
## DDPG算法
|
||
|
||
DDPG算法主要也包括两个功能,一个是选择动作,另外一个是更新策略,首先看选择动作:
|
||
|
||
```python
|
||
def choose_action(self, state):
|
||
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
|
||
action = self.actor(state)
|
||
return action.detach().cpu().numpy()[0, 0]
|
||
```
|
||
|
||
由于DDPG是直接从演员网络取得动作,所以这里不用$\epsilon-greedy$策略。在更新策略函数中,也会跟DQN稍有不同,并且加入软更新:
|
||
|
||
```python
|
||
def update(self):
|
||
if len(self.memory) < self.batch_size: # 当 memory 中不满足一个批量时,不更新策略
|
||
return
|
||
# 从经验回放中(replay memory)中随机采样一个批量的转移(transition)
|
||
state, action, reward, next_state, done = self.memory.sample(self.batch_size)
|
||
# 转变为张量
|
||
state = torch.FloatTensor(state).to(self.device)
|
||
next_state = torch.FloatTensor(next_state).to(self.device)
|
||
action = torch.FloatTensor(action).to(self.device)
|
||
reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device)
|
||
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device)
|
||
|
||
policy_loss = self.critic(state, self.actor(state))
|
||
policy_loss = -policy_loss.mean()
|
||
next_action = self.target_actor(next_state)
|
||
target_value = self.target_critic(next_state, next_action.detach())
|
||
expected_value = reward + (1.0 - done) * self.gamma * target_value
|
||
expected_value = torch.clamp(expected_value, -np.inf, np.inf)
|
||
|
||
value = self.critic(state, action)
|
||
value_loss = nn.MSELoss()(value, expected_value.detach())
|
||
|
||
self.actor_optimizer.zero_grad()
|
||
policy_loss.backward()
|
||
self.actor_optimizer.step()
|
||
self.critic_optimizer.zero_grad()
|
||
value_loss.backward()
|
||
self.critic_optimizer.step()
|
||
# 软更新
|
||
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
|
||
target_param.data.copy_(
|
||
target_param.data * (1.0 - self.soft_tau) +
|
||
param.data * self.soft_tau
|
||
)
|
||
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
|
||
target_param.data.copy_(
|
||
target_param.data * (1.0 - self.soft_tau) +
|
||
param.data * self.soft_tau
|
||
)
|
||
```
|
||
|
||
## 结果分析
|
||
|
||
实现算法之后,我们先看看训练效果:
|
||
|
||

|
||
|
||
可以看到算法整体上是达到收敛了的,但是稳定状态下波动还比较大,依然有提升的空间,限于笔者的精力,这里只是帮助赌注实现一个基础的代码演示,想要使得算法调到最优感兴趣的读者可以多思考实现。我们再来看看测试的结果:
|
||
|
||

|
||
|
||
从图中看出测试的平均奖励在-150左右,但其实训练的时候平均的稳态奖励在-300左右,这是因为测试的时候我们舍去了OU噪声的缘故。 |