116 lines
4.6 KiB
Python
116 lines
4.6 KiB
Python
#!/usr/bin/env python
|
||
# coding=utf-8
|
||
'''
|
||
Author: John
|
||
Email: johnjim0816@gmail.com
|
||
Date: 2020-09-11 23:03:00
|
||
LastEditor: John
|
||
LastEditTime: 2021-03-11 19:22:50
|
||
Discription:
|
||
Environment:
|
||
'''
|
||
|
||
import sys,os
|
||
sys.path.append(os.getcwd()) # 添加当前终端路径
|
||
import argparse
|
||
import gym
|
||
import datetime
|
||
from QLearning.plot import plot
|
||
from QLearning.utils import save_results
|
||
from envs.gridworld_env import CliffWalkingWapper, FrozenLakeWapper
|
||
from QLearning.agent import QLearning
|
||
|
||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
|
||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
|
||
|
||
def get_args():
|
||
'''训练的模型参数
|
||
'''
|
||
parser = argparse.ArgumentParser()
|
||
'''训练相关参数'''
|
||
parser.add_argument("--n_episodes", default=500,
|
||
type=int, help="训练的最大episode数目")
|
||
'''算法相关参数'''
|
||
parser.add_argument("--gamma", default=0.9,
|
||
type=float, help="reward的衰减率")
|
||
parser.add_argument("--epsilon_start", default=0.99,
|
||
type=float, help="e-greedy策略中初始epsilon")
|
||
parser.add_argument("--epsilon_end", default=0.01,
|
||
type=float, help="e-greedy策略中的结束epsilon")
|
||
parser.add_argument("--epsilon_decay", default=200,
|
||
type=float, help="e-greedy策略中epsilon的衰减率")
|
||
parser.add_argument("--lr", default=0.1, type=float, help="学习率")
|
||
config = parser.parse_args()
|
||
return config
|
||
def train(cfg,env,agent):
|
||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||
# env = FrozenLakeWapper(env)
|
||
rewards = [] # 记录所有episode的reward,
|
||
steps = [] # 记录所有episode的steps
|
||
for i_episode in range(cfg.n_episodes):
|
||
ep_reward = 0 # 记录每个episode的reward
|
||
ep_steps = 0 # 记录每个episode走了多少step
|
||
obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||
while True:
|
||
action = agent.choose_action(obs) # 根据算法选择一个动作
|
||
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||
# 训练 Q-learning算法
|
||
agent.update(obs, action, reward, next_obs, done) # 不需要下一步的action
|
||
obs = next_obs # 存储上一个观察值
|
||
ep_reward += reward
|
||
ep_steps += 1 # 计算step数
|
||
if done:
|
||
break
|
||
steps.append(ep_steps)
|
||
# 计算滑动平均的reward
|
||
if rewards:
|
||
rewards.append(rewards[-1]*0.9+ep_reward*0.1)
|
||
else:
|
||
rewards.append(ep_reward)
|
||
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
|
||
plot(rewards)
|
||
if not os.path.exists(SAVED_MODEL_PATH):
|
||
os.mkdir(SAVED_MODEL_PATH)
|
||
agent.save(SAVED_MODEL_PATH+'Q_table.pkl') # 训练结束,保存模型
|
||
'''存储reward等相关结果'''
|
||
save_results(rewards,tag='train',result_path=RESULT_PATH)
|
||
|
||
def eval(cfg,env,agent):
|
||
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
|
||
# env = FrozenLakeWapper(env)
|
||
rewards = [] # 记录所有episode的reward,
|
||
steps = [] # 记录所有episode的steps
|
||
for i_episode in range(20):
|
||
ep_reward = 0 # 记录每个episode的reward
|
||
ep_steps = 0 # 记录每个episode走了多少step
|
||
obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
|
||
while True:
|
||
action = agent.choose_action(obs) # 根据算法选择一个动作
|
||
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||
obs = next_obs # 存储上一个观察值
|
||
ep_reward += reward
|
||
ep_steps += 1 # 计算step数
|
||
if done:
|
||
break
|
||
steps.append(ep_steps)
|
||
# 计算滑动平均的reward
|
||
if rewards:
|
||
rewards.append(rewards[-1]*0.9+ep_reward*0.1)
|
||
else:
|
||
rewards.append(ep_reward)
|
||
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
|
||
plot(rewards)
|
||
'''存储reward等相关结果'''
|
||
save_results(rewards,tag='eval',result_path=RESULT_PATH)
|
||
|
||
if __name__ == "__main__":
|
||
cfg = get_args()
|
||
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
|
||
env = CliffWalkingWapper(env)
|
||
n_actions = env.action_space.n
|
||
agent = QLearning(n_actions,cfg)
|
||
train(cfg,env,agent)
|
||
eval(cfg,env,agent)
|
||
|