add Qlearning

This commit is contained in:
JohnJim0816
2021-03-11 19:26:32 +08:00
parent afd4f8c20d
commit 47390be0cf
11 changed files with 254 additions and 0 deletions

19
codes/QLearning/README.md Normal file
View File

@@ -0,0 +1,19 @@
## CliffWalking-v0环境简介
悬崖寻路问题CliffWalking是指在一个4 x 12的网格中智能体以网格的左下角位置为起点以网格的下角位置为终点目标是移动智能体到达终点位置智能体每次可以在上、下、左、右这4个方向中移动一步每移动一步会得到-1单位的奖励。
<img src="assets/image-20201007211441036.png" alt="image-20201007211441036" style="zoom:50%;" />
如图红色部分表示悬崖数字代表智能体能够观测到的位置信息即observation总共会有0-47等48个不同的值智能体再移动中会有以下限制
* 智能体不能移出网格,如果智能体想执行某个动作移出网格,那么这一步智能体不会移动,但是这个操作依然会得到-1单位的奖励
* 如果智能体“掉入悬崖” ,会立即回到起点位置,并得到-100单位的奖励
* 当智能体移动到终点时,该回合结束,该回合总奖励为各步奖励之和
实际的仿真界面如下:
<img src="assets/image-20201007211858925.png" alt="image-20201007211858925" style="zoom:50%;" />
由于从起点到终点最少需要13步每步得到-1的reward因此最佳训练算法下每个episode下reward总和应该为-13。

63
codes/QLearning/agent.py Normal file
View File

@@ -0,0 +1,63 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-03-11 19:16:27
Discription:
Environment:
'''
from functools import update_wrapper
import numpy as np
import math
import torch
from collections import defaultdict
class QLearning(object):
def __init__(self,
n_actions,cfg):
self.n_actions = n_actions # number of actions
self.lr = cfg.lr # learning rate
self.gamma = cfg.gamma
self.epsilon = 0
self.sample_count = 0 # epsilon随训练的也就是采样次数逐渐衰减所以需要计数
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 使用字典存储Q表个人比较喜欢这种也可以用下面一行的二维数组表示但是需要额外更改代码
# self.Q_table = np.zeros((n_states, n_actions)) # Q表
def choose_action(self, state):
self.sample_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay)
# 随机选取0-1之间的值如果大于epsilon就按照贪心策略选取action否则随机选取
if np.random.uniform(0, 1) > self.epsilon:
action = np.argmax(self.Q_table[state])
else:
action = np.random.choice(self.n_actions) # 有一定概率随机探索选取一个动作
return action
def update(self, state, action, reward, next_state, done):
Q_predict = self.Q_table[state][action]
if done:
Q_target = reward # terminal state
else:
Q_target = reward + self.gamma * np.max(
self.Q_table[next_state]) # Q_table-learning
self.Q_table[state][action] += self.lr * (Q_target - Q_predict)
def save(self,path):
'''把 Q表格 的数据保存到文件中
'''
import dill
torch.save(
obj=self.Q_table,
f=path,
pickle_module=dill
)
def load(self, path):
'''从文件中读取数据到 Q表格
'''
self.Q_table =torch.load(f='prod_dls.pkl',pickle_module=dill)

Binary file not shown.

After

Width:  |  Height:  |  Size: 233 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

115
codes/QLearning/main.py Normal file
View File

@@ -0,0 +1,115 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-03-11 19:22:50
Discription:
Environment:
'''
import sys,os
sys.path.append(os.getcwd()) # 添加当前终端路径
import argparse
import gym
import datetime
from QLearning.plot import plot
from QLearning.utils import save_results
from envs.gridworld_env import CliffWalkingWapper, FrozenLakeWapper
from QLearning.agent import QLearning
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
def get_args():
'''训练的模型参数
'''
parser = argparse.ArgumentParser()
'''训练相关参数'''
parser.add_argument("--n_episodes", default=500,
type=int, help="训练的最大episode数目")
'''算法相关参数'''
parser.add_argument("--gamma", default=0.9,
type=float, help="reward的衰减率")
parser.add_argument("--epsilon_start", default=0.99,
type=float, help="e-greedy策略中初始epsilon")
parser.add_argument("--epsilon_end", default=0.01,
type=float, help="e-greedy策略中的结束epsilon")
parser.add_argument("--epsilon_decay", default=200,
type=float, help="e-greedy策略中epsilon的衰减率")
parser.add_argument("--lr", default=0.1, type=float, help="学习率")
config = parser.parse_args()
return config
def train(cfg,env,agent):
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
# env = FrozenLakeWapper(env)
rewards = [] # 记录所有episode的reward,
steps = [] # 记录所有episode的steps
for i_episode in range(cfg.n_episodes):
ep_reward = 0 # 记录每个episode的reward
ep_steps = 0 # 记录每个episode走了多少step
obs = env.reset() # 重置环境, 重新开一局即开始新的一个episode
while True:
action = agent.choose_action(obs) # 根据算法选择一个动作
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
# 训练 Q-learning算法
agent.update(obs, action, reward, next_obs, done) # 不需要下一步的action
obs = next_obs # 存储上一个观察值
ep_reward += reward
ep_steps += 1 # 计算step数
if done:
break
steps.append(ep_steps)
# 计算滑动平均的reward
if rewards:
rewards.append(rewards[-1]*0.9+ep_reward*0.1)
else:
rewards.append(ep_reward)
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
plot(rewards)
if not os.path.exists(SAVED_MODEL_PATH):
os.mkdir(SAVED_MODEL_PATH)
agent.save(SAVED_MODEL_PATH+'Q_table.pkl') # 训练结束,保存模型
'''存储reward等相关结果'''
save_results(rewards,tag='train',result_path=RESULT_PATH)
def eval(cfg,env,agent):
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
# env = FrozenLakeWapper(env)
rewards = [] # 记录所有episode的reward,
steps = [] # 记录所有episode的steps
for i_episode in range(20):
ep_reward = 0 # 记录每个episode的reward
ep_steps = 0 # 记录每个episode走了多少step
obs = env.reset() # 重置环境, 重新开一局即开始新的一个episode
while True:
action = agent.choose_action(obs) # 根据算法选择一个动作
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
obs = next_obs # 存储上一个观察值
ep_reward += reward
ep_steps += 1 # 计算step数
if done:
break
steps.append(ep_steps)
# 计算滑动平均的reward
if rewards:
rewards.append(rewards[-1]*0.9+ep_reward*0.1)
else:
rewards.append(ep_reward)
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
plot(rewards)
'''存储reward等相关结果'''
save_results(rewards,tag='eval',result_path=RESULT_PATH)
if __name__ == "__main__":
cfg = get_args()
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
env = CliffWalkingWapper(env)
n_actions = env.action_space.n
agent = QLearning(n_actions,cfg)
train(cfg,env,agent)
eval(cfg,env,agent)

35
codes/QLearning/plot.py Normal file
View File

@@ -0,0 +1,35 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-10-07 20:57:11
LastEditor: John
LastEditTime: 2020-10-07 21:00:29
Discription:
Environment:
'''
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import os
def plot(item,ylabel='rewards'):
sns.set()
plt.figure()
plt.plot(np.arange(len(item)), item)
plt.title(ylabel+' of Q-learning')
plt.ylabel(ylabel)
plt.xlabel('episodes')
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
plt.show()
if __name__ == "__main__":
output_path = os.path.dirname(__file__)+"/result/"
rewards=np.load(output_path+"rewards_train.npy", )
MA_rewards=np.load(output_path+"MA_rewards_train.npy")
steps = np.load(output_path+"steps_train.npy")
plot(rewards)
plot(MA_rewards,ylabel='moving_average_rewards')
plot(steps,ylabel='steps')

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

22
codes/QLearning/utils.py Normal file
View File

@@ -0,0 +1,22 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-23 13:44:52
LastEditor: John
LastEditTime: 2021-03-11 19:18:34
Discription:
Environment:
'''
import os
import numpy as np
def save_results(rewards,tag='train',result_path='./result'):
'''保存reward等结果
'''
if not os.path.exists(result_path): # 检测是否存在文件夹
os.mkdir(result_path)
np.save(result_path+'rewards_'+tag+'.npy', rewards)
print('results saved!')