update projects
This commit is contained in:
19
projects/codes/Sarsa/README.md
Normal file
19
projects/codes/Sarsa/README.md
Normal file
@@ -0,0 +1,19 @@
|
||||
# Sarsa
|
||||
|
||||
## 使用说明
|
||||
|
||||
运行```main.py```即可
|
||||
|
||||
## 环境说明
|
||||
|
||||
见[环境说明](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/env_info.md)中的The Racetrack
|
||||
|
||||
## 算法伪代码
|
||||
|
||||

|
||||
|
||||
## 其他说明
|
||||
|
||||
### 与Q-learning区别
|
||||
|
||||
算法上区别很小,只在更新公式上,但Q-learning是Off-policy,而Sarsa是On-policy,可参考[知乎:强化学习中sarsa算法是不是比q-learning算法收敛速度更慢?](https://www.zhihu.com/question/268461866)
|
||||
BIN
projects/codes/Sarsa/assets/sarsa_algo.png
Normal file
BIN
projects/codes/Sarsa/assets/sarsa_algo.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 132 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
After Width: | Height: | Size: 40 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
After Width: | Height: | Size: 49 KiB |
58
projects/codes/Sarsa/sarsa.py
Normal file
58
projects/codes/Sarsa/sarsa.py
Normal file
@@ -0,0 +1,58 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-12 16:58:16
|
||||
LastEditor: John
|
||||
LastEditTime: 2022-04-29 20:12:57
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import numpy as np
|
||||
from collections import defaultdict
|
||||
import torch
|
||||
import math
|
||||
class Sarsa(object):
|
||||
def __init__(self,
|
||||
n_actions,cfg,):
|
||||
self.n_actions = n_actions
|
||||
self.lr = cfg.lr
|
||||
self.gamma = cfg.gamma
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.Q = defaultdict(lambda: np.zeros(n_actions)) # Q table
|
||||
def choose_action(self, state):
|
||||
self.sample_count += 1
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.sample_count / self.epsilon_decay) # The probability to select a random action, is is log decayed
|
||||
best_action = np.argmax(self.Q[state])
|
||||
action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions
|
||||
action_probs[best_action] += (1.0 - self.epsilon)
|
||||
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
|
||||
return action
|
||||
def predict_action(self,state):
|
||||
return np.argmax(self.Q[state])
|
||||
def update(self, state, action, reward, next_state, next_action,done):
|
||||
Q_predict = self.Q[state][action]
|
||||
if done:
|
||||
Q_target = reward # terminal state
|
||||
else:
|
||||
Q_target = reward + self.gamma * self.Q[next_state][next_action]
|
||||
self.Q[state][action] += self.lr * (Q_target - Q_predict)
|
||||
def save(self,path):
|
||||
'''把 Q表格 的数据保存到文件中
|
||||
'''
|
||||
import dill
|
||||
torch.save(
|
||||
obj=self.Q,
|
||||
f=path+"sarsa_model.pkl",
|
||||
pickle_module=dill
|
||||
)
|
||||
def load(self, path):
|
||||
'''从文件中读取数据到 Q表格
|
||||
'''
|
||||
import dill
|
||||
self.Q =torch.load(f=path+'sarsa_model.pkl',pickle_module=dill)
|
||||
119
projects/codes/Sarsa/task0.py
Normal file
119
projects/codes/Sarsa/task0.py
Normal file
@@ -0,0 +1,119 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-11 17:59:16
|
||||
LastEditor: John
|
||||
LastEditTime: 2022-04-29 20:18:13
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path of file
|
||||
parent_path = os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
|
||||
import datetime
|
||||
import torch
|
||||
from envs.racetrack_env import RacetrackEnv
|
||||
from Sarsa.sarsa import Sarsa
|
||||
from common.utils import save_results,make_dir,plot_rewards
|
||||
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
class Config:
|
||||
''' parameters for Sarsa
|
||||
'''
|
||||
def __init__(self):
|
||||
self.algo_name = 'Qlearning'
|
||||
self.env_name = 'CliffWalking-v0' # 0 up, 1 right, 2 down, 3 left
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check GPU
|
||||
self.result_path = curr_path+"/outputs/" +self.env_name+'/'+curr_time+'/results/' # path to save results
|
||||
self.model_path = curr_path+"/outputs/" +self.env_name+'/'+curr_time+'/models/' # path to save models
|
||||
self.train_eps = 300 # training episodes
|
||||
self.test_eps = 20 # testing episodes
|
||||
self.n_steps = 200 # maximum steps per episode
|
||||
self.epsilon_start = 0.90 # start value of epsilon
|
||||
self.epsilon_end = 0.01 # end value of epsilon
|
||||
self.epsilon_decay = 200 # decay rate of epsilon
|
||||
self.gamma = 0.99 # gamma: Gamma discount factor.
|
||||
self.lr = 0.2 # learning rate: step size parameter
|
||||
self.save = True # if save figures
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = RacetrackEnv()
|
||||
n_states = 9 # number of actions
|
||||
agent = Sarsa(n_states,cfg)
|
||||
return env,agent
|
||||
|
||||
def train(cfg,env,agent):
|
||||
rewards = []
|
||||
ma_rewards = []
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
action = agent.choose_action(state)
|
||||
ep_reward = 0
|
||||
# while True:
|
||||
for _ in range(cfg.n_steps):
|
||||
next_state, reward, done = env.step(action)
|
||||
ep_reward+=reward
|
||||
next_action = agent.choose_action(next_state)
|
||||
agent.update(state, action, reward, next_state, next_action,done)
|
||||
state = next_state
|
||||
action = next_action
|
||||
if done:
|
||||
break
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
rewards.append(ep_reward)
|
||||
if (i_ep+1)%2==0:
|
||||
print(f"Episode:{i_ep+1}, Reward:{ep_reward}, Epsilon:{agent.epsilon}")
|
||||
return rewards,ma_rewards
|
||||
|
||||
def test(cfg,env,agent):
|
||||
rewards = []
|
||||
ma_rewards = []
|
||||
for i_ep in range(cfg.test_eps):
|
||||
# Print out which episode we're on, useful for debugging.
|
||||
# Generate an episode.
|
||||
# An episode is an array of (state, action, reward) tuples
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
while True:
|
||||
# for _ in range(cfg.n_steps):
|
||||
action = agent.predict_action(state)
|
||||
next_state, reward, done = env.step(action)
|
||||
ep_reward+=reward
|
||||
state = next_state
|
||||
if done:
|
||||
break
|
||||
if ma_rewards:
|
||||
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
rewards.append(ep_reward)
|
||||
if (i_ep+1)%1==0:
|
||||
print("Episode:{}/{}: Reward:{}".format(i_ep+1, cfg.test_eps,ep_reward))
|
||||
print('Complete testing!')
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = Config()
|
||||
env,agent = env_agent_config(cfg,seed=1)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(cfg.result_path,cfg.model_path)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||||
plot_rewards(rewards, ma_rewards, cfg, tag="train")
|
||||
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=cfg.model_path)
|
||||
rewards,ma_rewards = test(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='test',path=cfg.result_path)
|
||||
plot_rewards(rewards, ma_rewards, cfg, tag="test")
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user