Files
easy-rl/projects/codes/Sarsa/sarsa.py
2022-07-31 23:42:12 +08:00

58 lines
2.0 KiB
Python

#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-12 16:58:16
LastEditor: John
LastEditTime: 2022-04-29 20:12:57
Discription:
Environment:
'''
import numpy as np
from collections import defaultdict
import torch
import math
class Sarsa(object):
def __init__(self,
n_actions,cfg,):
self.n_actions = n_actions
self.lr = cfg.lr
self.gamma = cfg.gamma
self.sample_count = 0
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.Q = defaultdict(lambda: np.zeros(n_actions)) # Q table
def choose_action(self, state):
self.sample_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay) # The probability to select a random action, is is log decayed
best_action = np.argmax(self.Q[state])
action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions
action_probs[best_action] += (1.0 - self.epsilon)
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
return action
def predict_action(self,state):
return np.argmax(self.Q[state])
def update(self, state, action, reward, next_state, next_action,done):
Q_predict = self.Q[state][action]
if done:
Q_target = reward # terminal state
else:
Q_target = reward + self.gamma * self.Q[next_state][next_action]
self.Q[state][action] += self.lr * (Q_target - Q_predict)
def save(self,path):
'''把 Q表格 的数据保存到文件中
'''
import dill
torch.save(
obj=self.Q,
f=path+"sarsa_model.pkl",
pickle_module=dill
)
def load(self, path):
'''从文件中读取数据到 Q表格
'''
import dill
self.Q =torch.load(f=path+'sarsa_model.pkl',pickle_module=dill)