This commit is contained in:
johnjim0816
2021-04-28 22:11:22 +08:00
parent e4690ac89f
commit ed7b60fd5b
73 changed files with 502 additions and 187 deletions

View File

@@ -5,68 +5,78 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
LastEditTime: 2021-04-13 19:03:39
LastEditTime: 2021-04-18 14:44:45
@Discription:
@Environment: python 3.7.7
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import torch
import datetime
from DQN.agent import DQN
from common.utils import save_results, make_dir, del_empty_dir
from common.plot import plot_rewards
from common.utils import save_results,make_dir,del_empty_dir
from DQN.agent import DQN
import datetime
import torch
import gym
import sys
import os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
class DQNConfig:
def __init__(self):
self.algo = "DQN" # name of algo
self.env = 'CartPole-v0'
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/' # path to save results
self.result_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/models/' # path to save results
self.gamma = 0.95
self.epsilon_start = 1 # e-greedy策略的初始epsilon
self.epsilon_start = 1 # e-greedy策略的初始epsilon
self.epsilon_end = 0.01
self.epsilon_decay = 500
self.lr = 0.0001 # learning rate
self.memory_capacity = 10000 # Replay Memory容量
self.lr = 0.0001 # learning rate
self.memory_capacity = 10000 # Replay Memory容量
self.batch_size = 32
self.train_eps = 10 # 训练的episode数目
self.target_update = 2 # target net的更新频率
self.eval_eps = 20 # 测试的episode数目
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
self.hidden_dim = 256 # 神经网络隐藏层维度
def train(cfg,env,agent):
self.train_eps = 300 # 训练的episode数目
self.target_update = 2 # target net的更新频率
self.eval_eps = 20 # 测试的episode数目
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
self.hidden_dim = 256 # 神经网络隐藏层维度
def train(cfg, env, agent):
print('Start to train !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moveing average reward
ma_rewards = [] # moveing average reward
for i_episode in range(cfg.train_eps):
state = env.reset()
state = env.reset()
done = False
ep_reward = 0
while not done:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
state = next_state
agent.update()
agent.memory.push(state, action, reward, next_state, done)
state = next_state
agent.update()
if i_episode % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward))
print('Episode:{}/{}, Reward:{}'.format(i_episode+1, cfg.train_eps, ep_reward))
rewards.append(ep_reward)
# 计算滑动窗口的reward
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
ma_rewards.append(ep_reward)
print('Complete training')
return rewards,ma_rewards
return rewards, ma_rewards
if __name__ == "__main__":
cfg = DQNConfig()
@@ -74,9 +84,10 @@ if __name__ == "__main__":
env.seed(1)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = DQN(state_dim,action_dim,cfg)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(cfg.result_path)
agent.save(path=cfg.result_path)
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=cfg.result_path)
agent = DQN(state_dim, action_dim, cfg)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

View File

@@ -1,88 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
LastEditTime: 2021-04-13 18:49:44
@Discription:
@Environment: python 3.7.7
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import torch
import datetime
from DQN.agent import DQN
from common.plot import plot_rewards
from common.utils import save_results,make_dir,del_empty_dir
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
make_dir(curr_path+"/saved_model/",curr_path+"/results/")
del_empty_dir(curr_path+"/saved_model/",curr_path+"/results/")
class DQNConfig:
def __init__(self):
self.env = 'LunarLander-v2'
self.algo = "DQN" # name of algo
self.gamma = 0.95
self.epsilon_start = 1 # e-greedy策略的初始epsilon
self.epsilon_end = 0.01
self.epsilon_decay = 500
self.lr = 0.0001 # learning rate
self.memory_capacity = 1000000 # Replay Memory容量
self.batch_size = 64
self.train_eps = 300 # 训练的episode数目
self.train_steps = 1000
self.target_update = 2 # target net的更新频率
self.eval_eps = 20 # 测试的episode数目
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
self.hidden_dim = 256 # 神经网络隐藏层维度
def train(cfg,env,agent):
print('Start to train !')
rewards = []
ma_rewards = [] # moveing average reward
for i_episode in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
for i_step in range(cfg.train_steps):
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
state = next_state
agent.update()
if done:
break
if i_episode % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward))
rewards.append(ep_reward)
# 计算滑动窗口的reward
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Complete training')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DQNConfig()
env = gym.make(cfg.env)
env.seed(1)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = DQN(state_dim,action_dim,cfg)
rewards,ma_rewards = train(cfg,env,agent)
make_dir(SAVED_MODEL_PATH,RESULT_PATH)
agent.save(path=SAVED_MODEL_PATH)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
del_empty_dir(SAVED_MODEL_PATH,RESULT_PATH)