更新算法模版
7
projects/codes/A2C/README.md
Normal file
@@ -0,0 +1,7 @@
|
||||
## 脚本描述
|
||||
|
||||
* `task0.py`:离散动作任务
|
||||
|
||||
* `task1.py`:离散动作任务,与`task0.py`唯一的区别就是Actor的激活函数是tanh而不是relu,在`CartPole-v1`上效果更好
|
||||
|
||||
* `task2.py`:连续动作任务,#TODO待调试
|
||||
@@ -0,0 +1,24 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_A2C_20221030-211435
|
||||
max_steps: 200
|
||||
mode: test
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
actor_hidden_dim: 256
|
||||
actor_lr: 0.0003
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
critic_hidden_dim: 256
|
||||
critic_lr: 0.001
|
||||
gamma: 0.99
|
||||
hidden_dim: 256
|
||||
target_update: 4
|
||||
@@ -0,0 +1,23 @@
|
||||
2022-10-30 21:25:53 - r - INFO: - n_states: 4, n_actions: 2
|
||||
2022-10-30 21:25:55 - r - INFO: - Start testing!
|
||||
2022-10-30 21:25:55 - r - INFO: - Env: CartPole-v1, Algorithm: A2C, Device: cuda
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 1/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 2/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 3/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 4/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 5/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 6/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 7/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 8/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 9/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:56 - r - INFO: - Episode: 10/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 11/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 12/20, Reward: 190.0, Step: 190
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 13/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 14/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 15/20, Reward: 96.0, Step: 96
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 16/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 17/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 18/20, Reward: 200.0, Step: 200
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 19/20, Reward: 112.0, Step: 112
|
||||
2022-10-30 21:25:57 - r - INFO: - Episode: 20/20, Reward: 200.0, Step: 200
|
||||
|
After Width: | Height: | Size: 34 KiB |
@@ -0,0 +1,21 @@
|
||||
episodes,rewards,steps
|
||||
0,200.0,200
|
||||
1,200.0,200
|
||||
2,200.0,200
|
||||
3,200.0,200
|
||||
4,200.0,200
|
||||
5,200.0,200
|
||||
6,200.0,200
|
||||
7,200.0,200
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
10,200.0,200
|
||||
11,190.0,190
|
||||
12,200.0,200
|
||||
13,200.0,200
|
||||
14,96.0,96
|
||||
15,200.0,200
|
||||
16,200.0,200
|
||||
17,200.0,200
|
||||
18,112.0,112
|
||||
19,200.0,200
|
||||
|
@@ -0,0 +1,25 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
eval_per_episode: 5
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_A2C_20221031-232138
|
||||
max_steps: 200
|
||||
mode: test
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
actor_hidden_dim: 256
|
||||
actor_lr: 0.0003
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
critic_hidden_dim: 256
|
||||
critic_lr: 0.001
|
||||
gamma: 0.99
|
||||
hidden_dim: 256
|
||||
target_update: 4
|
||||
@@ -0,0 +1,28 @@
|
||||
2022-10-31 23:33:16 - r - INFO: - n_states: 4, n_actions: 2
|
||||
2022-10-31 23:33:16 - r - INFO: - Actor model name: ActorSoftmaxTanh
|
||||
2022-10-31 23:33:16 - r - INFO: - Critic model name: Critic
|
||||
2022-10-31 23:33:16 - r - INFO: - ACMemory memory name: PGReplay
|
||||
2022-10-31 23:33:16 - r - INFO: - agent name: A2C
|
||||
2022-10-31 23:33:17 - r - INFO: - Start testing!
|
||||
2022-10-31 23:33:17 - r - INFO: - Env: CartPole-v1, Algorithm: A2C, Device: cuda
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 1/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 2/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 3/20, Reward: 186.0, Step: 186
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 4/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:18 - r - INFO: - Episode: 5/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 6/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 7/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 8/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 9/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 10/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 11/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 12/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 13/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 14/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 15/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 16/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 17/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 18/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:19 - r - INFO: - Episode: 19/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:20 - r - INFO: - Episode: 20/20, Reward: 200.0, Step: 200
|
||||
2022-10-31 23:33:20 - r - INFO: - Finish testing!
|
||||
|
After Width: | Height: | Size: 31 KiB |
@@ -1,21 +1,21 @@
|
||||
episodes,rewards,steps
|
||||
0,200.0,200
|
||||
1,200.0,200
|
||||
2,93.0,93
|
||||
3,155.0,155
|
||||
4,116.0,116
|
||||
2,186.0,186
|
||||
3,200.0,200
|
||||
4,200.0,200
|
||||
5,200.0,200
|
||||
6,190.0,190
|
||||
7,176.0,176
|
||||
6,200.0,200
|
||||
7,200.0,200
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
10,200.0,200
|
||||
11,179.0,179
|
||||
11,200.0,200
|
||||
12,200.0,200
|
||||
13,185.0,185
|
||||
14,191.0,191
|
||||
13,200.0,200
|
||||
14,200.0,200
|
||||
15,200.0,200
|
||||
16,200.0,200
|
||||
17,124.0,124
|
||||
17,200.0,200
|
||||
18,200.0,200
|
||||
19,172.0,172
|
||||
19,200.0,200
|
||||
|
@@ -0,0 +1,23 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
load_checkpoint: false
|
||||
load_path: tasks
|
||||
max_steps: 200
|
||||
mode: train
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
actor_hidden_dim: 256
|
||||
actor_lr: 0.0003
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
critic_hidden_dim: 256
|
||||
critic_lr: 0.001
|
||||
gamma: 0.99
|
||||
hidden_dim: 256
|
||||
|
After Width: | Height: | Size: 68 KiB |
@@ -0,0 +1,24 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
eval_per_episode: 5
|
||||
load_checkpoint: false
|
||||
load_path: tasks
|
||||
max_steps: 200
|
||||
mode: train
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
actor_hidden_dim: 256
|
||||
actor_lr: 0.0003
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
critic_hidden_dim: 256
|
||||
critic_lr: 0.001
|
||||
gamma: 0.99
|
||||
hidden_dim: 256
|
||||
|
After Width: | Height: | Size: 58 KiB |
@@ -1,34 +1,79 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-08-16 23:05:25
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 00:33:49
|
||||
Discription:
|
||||
'''
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from torch.distributions import Categorical,Normal
|
||||
|
||||
|
||||
class A2C:
|
||||
def __init__(self,models,memories,cfg):
|
||||
self.n_actions = cfg['n_actions']
|
||||
self.gamma = cfg['gamma']
|
||||
self.device = torch.device(cfg['device'])
|
||||
self.n_actions = cfg.n_actions
|
||||
self.gamma = cfg.gamma
|
||||
self.device = torch.device(cfg.device)
|
||||
self.continuous = cfg.continuous
|
||||
if hasattr(cfg,'action_bound'):
|
||||
self.action_bound = cfg.action_bound
|
||||
self.memory = memories['ACMemory']
|
||||
self.actor = models['Actor'].to(self.device)
|
||||
self.critic = models['Critic'].to(self.device)
|
||||
self.actor_optim = torch.optim.Adam(self.actor.parameters(), lr=cfg['actor_lr'])
|
||||
self.critic_optim = torch.optim.Adam(self.critic.parameters(), lr=cfg['critic_lr'])
|
||||
self.actor_optim = torch.optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
|
||||
self.critic_optim = torch.optim.Adam(self.critic.parameters(), lr=cfg.critic_lr)
|
||||
def sample_action(self,state):
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
dist = self.actor(state)
|
||||
value = self.critic(state) # note that 'dist' need require_grad=True
|
||||
value = value.detach().numpy().squeeze(0)[0]
|
||||
action = np.random.choice(self.n_actions, p=dist.detach().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action,value,dist
|
||||
# state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
# dist = self.actor(state)
|
||||
# self.entropy = - np.sum(np.mean(dist.detach().cpu().numpy()) * np.log(dist.detach().cpu().numpy()))
|
||||
# value = self.critic(state) # note that 'dist' need require_grad=True
|
||||
# self.value = value.detach().cpu().numpy().squeeze(0)[0]
|
||||
# action = np.random.choice(self.n_actions, p=dist.detach().cpu().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
# self.log_prob = torch.log(dist.squeeze(0)[action])
|
||||
if self.continuous:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
mu, sigma = self.actor(state)
|
||||
dist = Normal(self.action_bound * mu.view(1,), sigma.view(1,))
|
||||
action = dist.sample()
|
||||
value = self.critic(state)
|
||||
# self.entropy = - np.sum(np.mean(dist.detach().cpu().numpy()) * np.log(dist.detach().cpu().numpy()))
|
||||
self.value = value.detach().cpu().numpy().squeeze(0)[0] # detach() to avoid gradient
|
||||
self.log_prob = dist.log_prob(action).squeeze(dim=0) # Tensor([0.])
|
||||
self.entropy = dist.entropy().cpu().detach().numpy().squeeze(0) # detach() to avoid gradient
|
||||
return action.cpu().detach().numpy()
|
||||
else:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
probs = self.actor(state)
|
||||
dist = Categorical(probs)
|
||||
action = dist.sample() # Tensor([0])
|
||||
value = self.critic(state)
|
||||
self.value = value.detach().cpu().numpy().squeeze(0)[0] # detach() to avoid gradient
|
||||
self.log_prob = dist.log_prob(action).squeeze(dim=0) # Tensor([0.])
|
||||
self.entropy = dist.entropy().cpu().detach().numpy().squeeze(0) # detach() to avoid gradient
|
||||
return action.cpu().numpy().item()
|
||||
@torch.no_grad()
|
||||
def predict_action(self,state):
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
dist = self.actor(state)
|
||||
value = self.critic(state) # note that 'dist' need require_grad=True
|
||||
value = value.detach().numpy().squeeze(0)[0]
|
||||
action = np.random.choice(self.n_actions, p=dist.detach().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action,value,dist
|
||||
if self.continuous:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
mu, sigma = self.actor(state)
|
||||
dist = Normal(self.action_bound * mu.view(1,), sigma.view(1,))
|
||||
action = dist.sample()
|
||||
return action.cpu().detach().numpy()
|
||||
else:
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
dist = self.actor(state)
|
||||
# value = self.critic(state) # note that 'dist' need require_grad=True
|
||||
# value = value.detach().cpu().numpy().squeeze(0)[0]
|
||||
action = np.random.choice(self.n_actions, p=dist.detach().cpu().numpy().squeeze(0)) # shape(p=(n_actions,1)
|
||||
return action
|
||||
def update(self,next_state,entropy):
|
||||
value_pool,log_prob_pool,reward_pool = self.memory.sample()
|
||||
value_pool = torch.tensor(value_pool, device=self.device)
|
||||
log_prob_pool = torch.stack(log_prob_pool)
|
||||
next_state = torch.tensor(next_state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
next_value = self.critic(next_state)
|
||||
returns = np.zeros_like(reward_pool)
|
||||
@@ -36,9 +81,7 @@ class A2C:
|
||||
next_value = reward_pool[t] + self.gamma * next_value # G(s_{t},a{t}) = r_{t+1} + gamma * V(s_{t+1})
|
||||
returns[t] = next_value
|
||||
returns = torch.tensor(returns, device=self.device)
|
||||
value_pool = torch.tensor(value_pool, device=self.device)
|
||||
advantages = returns - value_pool
|
||||
log_prob_pool = torch.stack(log_prob_pool)
|
||||
actor_loss = (-log_prob_pool * advantages).mean()
|
||||
critic_loss = 0.5 * advantages.pow(2).mean()
|
||||
tot_loss = actor_loss + critic_loss + 0.001 * entropy
|
||||
|
||||
@@ -1,14 +1,24 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-09-19 14:48:16
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-30 01:21:50
|
||||
Discription: #TODO,待更新模版
|
||||
'''
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
class A2C_2:
|
||||
def __init__(self,models,memories,cfg):
|
||||
self.n_actions = cfg['n_actions']
|
||||
self.gamma = cfg['gamma']
|
||||
self.device = torch.device(cfg['device'])
|
||||
self.n_actions = cfg.n_actions
|
||||
self.gamma = cfg.gamma
|
||||
self.device = torch.device(cfg.device)
|
||||
self.memory = memories['ACMemory']
|
||||
self.ac_net = models['ActorCritic'].to(self.device)
|
||||
self.ac_optimizer = torch.optim.Adam(self.ac_net.parameters(), lr=cfg['lr'])
|
||||
self.ac_optimizer = torch.optim.Adam(self.ac_net.parameters(), lr = cfg.lr)
|
||||
def sample_action(self,state):
|
||||
state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
value, dist = self.ac_net(state) # note that 'dist' need require_grad=True
|
||||
|
||||
21
projects/codes/A2C/config/CartPole-v1_A2C_Test.yaml
Normal file
@@ -0,0 +1,21 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
mode: test
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_A2C_20221031-232138
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
continuous: false
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
gamma: 0.99
|
||||
actor_lr: 0.0003
|
||||
critic_lr: 0.001
|
||||
target_update: 4
|
||||
19
projects/codes/A2C/config/CartPole-v1_A2C_Train.yaml
Normal file
@@ -0,0 +1,19 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
mode: train
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 600
|
||||
algo_cfg:
|
||||
continuous: false
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
gamma: 0.0003
|
||||
lr: 0.001
|
||||
21
projects/codes/A2C/config/Pendulum-v1_A2C_Train.yaml
Normal file
@@ -0,0 +1,21 @@
|
||||
general_cfg:
|
||||
algo_name: A2C
|
||||
device: cuda
|
||||
env_name: Pendulum-v1
|
||||
mode: train
|
||||
eval_per_episode: 200
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 20
|
||||
train_eps: 1000
|
||||
algo_cfg:
|
||||
continuous: true
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
gamma: 0.0003
|
||||
actor_lr: 0.0003
|
||||
critic_lr: 0.001
|
||||
38
projects/codes/A2C/config/config.py
Normal file
@@ -0,0 +1,38 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 00:53:03
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 00:17:55
|
||||
Discription: default parameters of A2C
|
||||
'''
|
||||
from common.config import GeneralConfig,AlgoConfig
|
||||
|
||||
class GeneralConfigA2C(GeneralConfig):
|
||||
def __init__(self) -> None:
|
||||
self.env_name = "CartPole-v1" # name of environment
|
||||
self.algo_name = "A2C" # name of algorithm
|
||||
self.mode = "train" # train or test
|
||||
self.seed = 1 # random seed
|
||||
self.device = "cuda" # device to use
|
||||
self.train_eps = 1000 # number of episodes for training
|
||||
self.test_eps = 20 # number of episodes for testing
|
||||
self.max_steps = 200 # max steps for each episode
|
||||
self.load_checkpoint = False
|
||||
self.load_path = "tasks" # path to load model
|
||||
self.show_fig = False # show figure or not
|
||||
self.save_fig = True # save figure or not
|
||||
|
||||
class AlgoConfigA2C(AlgoConfig):
|
||||
def __init__(self) -> None:
|
||||
self.continuous = False # continuous or discrete action space
|
||||
self.hidden_dim = 256 # hidden_dim for MLP
|
||||
self.gamma = 0.99 # discount factor
|
||||
self.actor_lr = 3e-4 # learning rate of actor
|
||||
self.critic_lr = 1e-3 # learning rate of critic
|
||||
self.actor_hidden_dim = 256 # hidden_dim for actor MLP
|
||||
self.critic_hidden_dim = 256 # hidden_dim for critic MLP
|
||||
self.buffer_size = 100000 # size of replay buffer
|
||||
self.batch_size = 64 # batch size
|
||||
@@ -1,121 +0,0 @@
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import datetime
|
||||
import argparse
|
||||
import gym
|
||||
import torch
|
||||
import numpy as np
|
||||
from common.utils import all_seed
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorSoftmax,Critic
|
||||
from envs.register import register_env
|
||||
from a2c import A2C
|
||||
|
||||
class Main(Launcher):
|
||||
def get_args(self):
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='A2C',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=1600,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--actor_lr',default=3e-4,type=float,help="learning rate of actor")
|
||||
parser.add_argument('--critic_lr',default=1e-3,type=float,help="learning rate of critic")
|
||||
parser.add_argument('--actor_hidden_dim',default=256,type=int,help="hidden of actor net")
|
||||
parser.add_argument('--critic_hidden_dim',default=256,type=int,help="hidden of critic net")
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=10,type=int,help="seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
|
||||
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
|
||||
}
|
||||
args = {**vars(args),**default_args} # type(dict)
|
||||
return args
|
||||
def env_agent_config(self,cfg):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg['env_name'])
|
||||
env = gym.make(cfg['env_name'])
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
models = {'Actor':ActorSoftmax(cfg['n_states'],cfg['n_actions'], hidden_dim = cfg['actor_hidden_dim']),'Critic':Critic(cfg['n_states'],1,hidden_dim=cfg['critic_hidden_dim'])}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C(models,memories,cfg)
|
||||
return env,agent
|
||||
def train(self,cfg,env,agent):
|
||||
print("Start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
|
||||
for i_ep in range(cfg['train_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
action, value, dist = agent.sample_action(state) # sample action
|
||||
next_state, reward, done, _ = env.step(action) # update env and return transitions
|
||||
log_prob = torch.log(dist.squeeze(0)[action])
|
||||
entropy = -np.sum(np.mean(dist.detach().numpy()) * np.log(dist.detach().numpy()))
|
||||
agent.memory.push((value,log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += entropy
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
if (i_ep+1)%10==0:
|
||||
print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, Steps:{ep_step}')
|
||||
print("Finish training!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
def test(self,cfg,env,agent):
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg['ep_max_steps']):
|
||||
action,_,_ = agent.predict_action(state) # predict action
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Steps:{ep_step}, Reward: {ep_reward:.2f}")
|
||||
print("Finish testing!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,3 +1,13 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-09-19 14:48:16
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-30 01:21:15
|
||||
Discription: #TODO,待更新模版
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
|
||||
@@ -1,19 +0,0 @@
|
||||
{
|
||||
"algo_name": "A2C",
|
||||
"env_name": "CartPole-v0",
|
||||
"train_eps": 2000,
|
||||
"test_eps": 20,
|
||||
"ep_max_steps": 100000,
|
||||
"gamma": 0.99,
|
||||
"lr": 0.0003,
|
||||
"actor_hidden_dim": 256,
|
||||
"critic_hidden_dim": 256,
|
||||
"device": "cpu",
|
||||
"seed": 10,
|
||||
"show_fig": false,
|
||||
"save_fig": true,
|
||||
"result_path": "/Users/jj/Desktop/rl-tutorials/codes/A2C/outputs/CartPole-v0/20220829-135818/results/",
|
||||
"model_path": "/Users/jj/Desktop/rl-tutorials/codes/A2C/outputs/CartPole-v0/20220829-135818/models/",
|
||||
"n_states": 4,
|
||||
"n_actions": 2
|
||||
}
|
||||
|
Before Width: | Height: | Size: 44 KiB |
|
Before Width: | Height: | Size: 63 KiB |
@@ -1 +0,0 @@
|
||||
{"algo_name": "A2C", "env_name": "CartPole-v0", "train_eps": 1600, "test_eps": 20, "ep_max_steps": 100000, "gamma": 0.99, "actor_lr": 0.0003, "critic_lr": 0.001, "actor_hidden_dim": 256, "critic_hidden_dim": 256, "device": "cpu", "seed": 10, "show_fig": false, "save_fig": true, "result_path": "/Users/jj/Desktop/rl-tutorials/codes/A2C/outputs/CartPole-v0/20220829-143327/results/", "model_path": "/Users/jj/Desktop/rl-tutorials/codes/A2C/outputs/CartPole-v0/20220829-143327/models/", "n_states": 4, "n_actions": 2}
|
||||
|
Before Width: | Height: | Size: 41 KiB |
@@ -1,21 +0,0 @@
|
||||
episodes,rewards,steps
|
||||
0,177.0,177
|
||||
1,180.0,180
|
||||
2,200.0,200
|
||||
3,200.0,200
|
||||
4,167.0,167
|
||||
5,124.0,124
|
||||
6,128.0,128
|
||||
7,200.0,200
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
10,186.0,186
|
||||
11,187.0,187
|
||||
12,200.0,200
|
||||
13,176.0,176
|
||||
14,200.0,200
|
||||
15,200.0,200
|
||||
16,200.0,200
|
||||
17,200.0,200
|
||||
18,185.0,185
|
||||
19,180.0,180
|
||||
|
|
Before Width: | Height: | Size: 66 KiB |
142
projects/codes/A2C/task0.py
Normal file
@@ -0,0 +1,142 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 01:19:43
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 01:21:06
|
||||
Discription:
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorSoftmax,Critic
|
||||
from envs.register import register_env
|
||||
from a2c import A2C
|
||||
from config.config import GeneralConfigA2C,AlgoConfigA2C
|
||||
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigA2C())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigA2C())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=True) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed = cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
models = {'Actor':ActorSoftmax(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C(models,memories,cfg)
|
||||
for k,v in models.items():
|
||||
logger.info(f"{k} model name: {type(v).__name__}")
|
||||
for k,v in memories.items():
|
||||
logger.info(f"{k} memory name: {type(v).__name__}")
|
||||
logger.info(f"agent name: {type(agent).__name__}")
|
||||
return env,agent
|
||||
def train_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0 # entropy per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += agent.entropy
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
return agent,ep_reward,ep_step
|
||||
def test_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, terminated, truncated , info = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
# def train(self,cfg,env,agent,logger):
|
||||
# logger.info("Start training!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.train_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0 # step per episode
|
||||
# ep_entropy = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.sample_action(state) # sample action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
# agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
# state = next_state # update state
|
||||
# ep_reward += reward
|
||||
# ep_entropy += agent.entropy
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# agent.update(next_state,ep_entropy) # update agent
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish training!")
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
# def test(self,cfg,env,agent,logger):
|
||||
# logger.info("Start testing!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.test_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.predict_action(state) # predict action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action)
|
||||
# state = next_state
|
||||
# ep_reward += reward
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish testing!")
|
||||
# env.close()
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
142
projects/codes/A2C/task1.py
Normal file
@@ -0,0 +1,142 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 01:19:43
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 01:21:12
|
||||
Discription: continuous action space
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorSoftmaxTanh,Critic
|
||||
from envs.register import register_env
|
||||
from a2c import A2C
|
||||
from config.config import GeneralConfigA2C,AlgoConfigA2C
|
||||
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigA2C())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigA2C())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=True) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed = cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
models = {'Actor':ActorSoftmaxTanh(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C(models,memories,cfg)
|
||||
for k,v in models.items():
|
||||
logger.info(f"{k} model name: {type(v).__name__}")
|
||||
for k,v in memories.items():
|
||||
logger.info(f"{k} memory name: {type(v).__name__}")
|
||||
logger.info(f"agent name: {type(agent).__name__}")
|
||||
return env,agent
|
||||
def train_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0 # entropy per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += agent.entropy
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
return agent,ep_reward,ep_step
|
||||
def test_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, terminated, truncated , info = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
# def train(self,cfg,env,agent,logger):
|
||||
# logger.info("Start training!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.train_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0 # step per episode
|
||||
# ep_entropy = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.sample_action(state) # sample action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
# agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
# state = next_state # update state
|
||||
# ep_reward += reward
|
||||
# ep_entropy += agent.entropy
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# agent.update(next_state,ep_entropy) # update agent
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish training!")
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
# def test(self,cfg,env,agent,logger):
|
||||
# logger.info("Start testing!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.test_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.predict_action(state) # predict action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action)
|
||||
# state = next_state
|
||||
# ep_reward += reward
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish testing!")
|
||||
# env.close()
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
149
projects/codes/A2C/task2.py
Normal file
@@ -0,0 +1,149 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 01:19:43
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-11-01 00:08:22
|
||||
Discription: the only difference from task0.py is that the actor here we use ActorSoftmaxTanh instead of ActorSoftmax with ReLU
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import numpy as np
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.launcher import Launcher
|
||||
from common.memories import PGReplay
|
||||
from common.models import ActorNormal,Critic
|
||||
from envs.register import register_env
|
||||
from a2c import A2C
|
||||
from config.config import GeneralConfigA2C,AlgoConfigA2C
|
||||
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigA2C())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigA2C())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=True) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed = cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
try:
|
||||
n_actions = env.action_space.n # action dimension
|
||||
except AttributeError:
|
||||
n_actions = env.action_space.shape[0]
|
||||
logger.info(f"action bound: {abs(env.action_space.low.item())}")
|
||||
setattr(cfg, 'action_bound', abs(env.action_space.low.item()))
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
models = {'Actor':ActorNormal(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
|
||||
memories = {'ACMemory':PGReplay()}
|
||||
agent = A2C(models,memories,cfg)
|
||||
for k,v in models.items():
|
||||
logger.info(f"{k} model name: {type(v).__name__}")
|
||||
for k,v in memories.items():
|
||||
logger.info(f"{k} memory name: {type(v).__name__}")
|
||||
logger.info(f"agent name: {type(agent).__name__}")
|
||||
return env,agent
|
||||
def train_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
ep_entropy = 0 # entropy per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_entropy += agent.entropy
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
agent.update(next_state,ep_entropy) # update agent
|
||||
return agent,ep_reward,ep_step
|
||||
def test_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, terminated, truncated , info = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
return agent,ep_reward,ep_step
|
||||
# def train(self,cfg,env,agent,logger):
|
||||
# logger.info("Start training!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.train_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0 # step per episode
|
||||
# ep_entropy = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.sample_action(state) # sample action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
||||
# agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
||||
# state = next_state # update state
|
||||
# ep_reward += reward
|
||||
# ep_entropy += agent.entropy
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# agent.update(next_state,ep_entropy) # update agent
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish training!")
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
# def test(self,cfg,env,agent,logger):
|
||||
# logger.info("Start testing!")
|
||||
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
# rewards = [] # record rewards for all episodes
|
||||
# steps = [] # record steps for all episodes
|
||||
# for i_ep in range(cfg.test_eps):
|
||||
# ep_reward = 0 # reward per episode
|
||||
# ep_step = 0
|
||||
# state = env.reset() # reset and obtain initial state
|
||||
# for _ in range(cfg.max_steps):
|
||||
# action = agent.predict_action(state) # predict action
|
||||
# next_state, reward, terminated, truncated , info = env.step(action)
|
||||
# state = next_state
|
||||
# ep_reward += reward
|
||||
# ep_step += 1
|
||||
# if terminated:
|
||||
# break
|
||||
# rewards.append(ep_reward)
|
||||
# steps.append(ep_step)
|
||||
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
||||
# logger.info("Finish testing!")
|
||||
# env.close()
|
||||
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-09 20:25:52
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-06-09 19:04:44
|
||||
LastEditTime: 2022-09-27 15:43:21
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -14,96 +14,45 @@ import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
import torch.nn.functional as F
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity # 经验回放的容量
|
||||
self.buffer = [] # 缓冲区
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition)
|
||||
'''
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移
|
||||
state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等
|
||||
return state, action, reward, next_state, done
|
||||
|
||||
def __len__(self):
|
||||
''' 返回当前存储的量
|
||||
'''
|
||||
return len(self.buffer)
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
|
||||
super(Actor, self).__init__()
|
||||
self.linear1 = nn.Linear(n_states, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, n_actions)
|
||||
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
x = torch.tanh(self.linear3(x))
|
||||
return x
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
|
||||
super(Critic, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, 1)
|
||||
# 随机初始化为较小的值
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
def forward(self, state, action):
|
||||
# 按维数1拼接
|
||||
x = torch.cat([state, action], 1)
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
x = self.linear3(x)
|
||||
return x
|
||||
class DDPG:
|
||||
def __init__(self, n_states, n_actions, cfg):
|
||||
self.device = torch.device(cfg.device)
|
||||
self.critic = Critic(n_states, n_actions, cfg.hidden_dim).to(self.device)
|
||||
self.actor = Actor(n_states, n_actions, cfg.hidden_dim).to(self.device)
|
||||
self.target_critic = Critic(n_states, n_actions, cfg.hidden_dim).to(self.device)
|
||||
self.target_actor = Actor(n_states, n_actions, cfg.hidden_dim).to(self.device)
|
||||
|
||||
# 复制参数到目标网络
|
||||
class DDPG:
|
||||
def __init__(self, models,memories,cfg):
|
||||
self.device = torch.device(cfg['device'])
|
||||
self.critic = models['critic'].to(self.device)
|
||||
self.target_critic = models['critic'].to(self.device)
|
||||
self.actor = models['actor'].to(self.device)
|
||||
self.target_actor = models['actor'].to(self.device)
|
||||
# copy weights from critic to target_critic
|
||||
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
# copy weights from actor to target_actor
|
||||
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg['critic_lr'])
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg['actor_lr'])
|
||||
self.memory = memories['memory']
|
||||
self.batch_size = cfg['batch_size']
|
||||
self.gamma = cfg['gamma']
|
||||
self.tau = cfg['tau']
|
||||
|
||||
self.critic_optimizer = optim.Adam(
|
||||
self.critic.parameters(), lr=cfg.critic_lr)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
|
||||
self.memory = ReplayBuffer(cfg.memory_capacity)
|
||||
self.batch_size = cfg.batch_size
|
||||
self.soft_tau = cfg.soft_tau # 软更新参数
|
||||
self.gamma = cfg.gamma
|
||||
|
||||
def choose_action(self, state):
|
||||
def sample_action(self, state):
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
|
||||
action = self.actor(state)
|
||||
return action.detach().cpu().numpy()[0, 0]
|
||||
@torch.no_grad()
|
||||
def predict_action(self, state):
|
||||
''' predict action
|
||||
'''
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
|
||||
action = self.actor(state)
|
||||
return action.cpu().numpy()[0, 0]
|
||||
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size: # 当 memory 中不满足一个批量时,不更新策略
|
||||
if len(self.memory) < self.batch_size: # when memory size is less than batch size, return
|
||||
return
|
||||
# 从经验回放中(replay memory)中随机采样一个批量的转移(transition)
|
||||
# sample a random minibatch of N transitions from R
|
||||
state, action, reward, next_state, done = self.memory.sample(self.batch_size)
|
||||
# 转变为张量
|
||||
# convert to tensor
|
||||
state = torch.FloatTensor(np.array(state)).to(self.device)
|
||||
next_state = torch.FloatTensor(np.array(next_state)).to(self.device)
|
||||
action = torch.FloatTensor(np.array(action)).to(self.device)
|
||||
@@ -126,19 +75,22 @@ class DDPG:
|
||||
self.critic_optimizer.zero_grad()
|
||||
value_loss.backward()
|
||||
self.critic_optimizer.step()
|
||||
# 软更新
|
||||
# soft update
|
||||
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
|
||||
target_param.data.copy_(
|
||||
target_param.data * (1.0 - self.soft_tau) +
|
||||
param.data * self.soft_tau
|
||||
target_param.data * (1.0 - self.tau) +
|
||||
param.data * self.tau
|
||||
)
|
||||
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
|
||||
target_param.data.copy_(
|
||||
target_param.data * (1.0 - self.soft_tau) +
|
||||
param.data * self.soft_tau
|
||||
target_param.data * (1.0 - self.tau) +
|
||||
param.data * self.tau
|
||||
)
|
||||
def save(self,path):
|
||||
torch.save(self.actor.state_dict(), path+'checkpoint.pt')
|
||||
def save_model(self,path):
|
||||
from pathlib import Path
|
||||
# create path
|
||||
Path(path).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.actor.state_dict(), f"{path}/actor_checkpoint.pt")
|
||||
|
||||
def load(self,path):
|
||||
self.actor.load_state_dict(torch.load(path+'checkpoint.pt'))
|
||||
def load_model(self,path):
|
||||
self.actor.load_state_dict(torch.load(f"{path}/actor_checkpoint.pt"))
|
||||
152
projects/codes/DDPG/main.py
Normal file
@@ -0,0 +1,152 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 20:58:21
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-09-27 15:50:12
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
|
||||
import datetime
|
||||
import gym
|
||||
import torch
|
||||
import argparse
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from env import NormalizedActions,OUNoise
|
||||
from ddpg import DDPG
|
||||
from common.utils import all_seed
|
||||
from common.memories import ReplayBufferQue
|
||||
from common.launcher import Launcher
|
||||
from envs.register import register_env
|
||||
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
|
||||
super(Actor, self).__init__()
|
||||
self.linear1 = nn.Linear(n_states, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, n_actions)
|
||||
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
x = torch.tanh(self.linear3(x))
|
||||
return x
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim, init_w=3e-3):
|
||||
super(Critic, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_states + n_actions, hidden_dim)
|
||||
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.linear3 = nn.Linear(hidden_dim, 1)
|
||||
# 随机初始化为较小的值
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
def forward(self, state, action):
|
||||
# 按维数1拼接
|
||||
x = torch.cat([state, action], 1)
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
x = self.linear3(x)
|
||||
return x
|
||||
class Main(Launcher):
|
||||
def get_args(self):
|
||||
""" hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='DDPG',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='Pendulum-v1',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=300,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--max_steps',default=100000,type=int,help="steps per episode, much larger value can simulate infinite steps")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--critic_lr',default=1e-3,type=float,help="learning rate of critic")
|
||||
parser.add_argument('--actor_lr',default=1e-4,type=float,help="learning rate of actor")
|
||||
parser.add_argument('--memory_capacity',default=8000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=128,type=int)
|
||||
parser.add_argument('--target_update',default=2,type=int)
|
||||
parser.add_argument('--tau',default=1e-2,type=float)
|
||||
parser.add_argument('--critic_hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--actor_hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--seed',default=1,type=int,help="random seed")
|
||||
parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not")
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/",
|
||||
'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/",
|
||||
}
|
||||
args = {**vars(args),**default_args} # type(dict)
|
||||
return args
|
||||
|
||||
def env_agent_config(self,cfg):
|
||||
register_env(cfg['env_name'])
|
||||
env = gym.make(cfg['env_name'])
|
||||
env = NormalizedActions(env) # decorate with action noise
|
||||
if cfg['seed'] !=0: # set random seed
|
||||
all_seed(env,seed=cfg["seed"])
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
print(f"n_states: {n_states}, n_actions: {n_actions}")
|
||||
cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters
|
||||
models = {"actor":Actor(n_states,n_actions,hidden_dim=cfg['actor_hidden_dim']),"critic":Critic(n_states,n_actions,hidden_dim=cfg['critic_hidden_dim'])}
|
||||
memories = {"memory":ReplayBufferQue(cfg['memory_capacity'])}
|
||||
agent = DDPG(models,memories,cfg)
|
||||
return env,agent
|
||||
def train(self,cfg, env, agent):
|
||||
print('Start training!')
|
||||
ou_noise = OUNoise(env.action_space) # noise of action
|
||||
rewards = [] # record rewards for all episodes
|
||||
for i_ep in range(cfg['train_eps']):
|
||||
state = env.reset()
|
||||
ou_noise.reset()
|
||||
ep_reward = 0
|
||||
for i_step in range(cfg['max_steps']):
|
||||
action = agent.sample_action(state)
|
||||
action = ou_noise.get_action(action, i_step+1)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push((state, action, reward, next_state, done))
|
||||
agent.update()
|
||||
state = next_state
|
||||
if done:
|
||||
break
|
||||
if (i_ep+1)%10 == 0:
|
||||
print(f"Env:{i_ep+1}/{cfg['train_eps']}, Reward:{ep_reward:.2f}")
|
||||
rewards.append(ep_reward)
|
||||
print('Finish training!')
|
||||
return {'rewards':rewards}
|
||||
|
||||
def test(self,cfg, env, agent):
|
||||
print('Start testing!')
|
||||
rewards = [] # record rewards for all episodes
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
for i_step in range(cfg['max_steps']):
|
||||
action = agent.predict_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
state = next_state
|
||||
if done:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
print(f"Episode:{i_ep+1}/{cfg['test_eps']}, Reward:{ep_reward:.1f}")
|
||||
print('Finish testing!')
|
||||
return {'rewards':rewards}
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
@@ -1,18 +0,0 @@
|
||||
{
|
||||
"algo_name": "DDPG",
|
||||
"env_name": "Pendulum-v1",
|
||||
"train_eps": 300,
|
||||
"test_eps": 20,
|
||||
"gamma": 0.99,
|
||||
"critic_lr": 0.001,
|
||||
"actor_lr": 0.0001,
|
||||
"memory_capacity": 8000,
|
||||
"batch_size": 128,
|
||||
"target_update": 2,
|
||||
"soft_tau": 0.01,
|
||||
"hidden_dim": 256,
|
||||
"deivce": "cpu",
|
||||
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials/outputs/DDPG/outputs/Pendulum-v1/20220713-225402/results//",
|
||||
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials/outputs/DDPG/outputs/Pendulum-v1/20220713-225402/models/",
|
||||
"save_fig": true
|
||||
}
|
||||
|
Before Width: | Height: | Size: 42 KiB |
|
Before Width: | Height: | Size: 66 KiB |
@@ -0,0 +1,25 @@
|
||||
{
|
||||
"algo_name": "DDPG",
|
||||
"env_name": "Pendulum-v1",
|
||||
"train_eps": 300,
|
||||
"test_eps": 20,
|
||||
"max_steps": 100000,
|
||||
"gamma": 0.99,
|
||||
"critic_lr": 0.001,
|
||||
"actor_lr": 0.0001,
|
||||
"memory_capacity": 8000,
|
||||
"batch_size": 128,
|
||||
"target_update": 2,
|
||||
"tau": 0.01,
|
||||
"critic_hidden_dim": 256,
|
||||
"actor_hidden_dim": 256,
|
||||
"device": "cpu",
|
||||
"seed": 1,
|
||||
"show_fig": false,
|
||||
"save_fig": true,
|
||||
"result_path": "/Users/jj/Desktop/rl-tutorials/codes/DDPG/outputs/Pendulum-v1/20220927-155053/results/",
|
||||
"model_path": "/Users/jj/Desktop/rl-tutorials/codes/DDPG/outputs/Pendulum-v1/20220927-155053/models/",
|
||||
"n_states": 3,
|
||||
"n_actions": 1,
|
||||
"training_time": 358.8142900466919
|
||||
}
|
||||
|
After Width: | Height: | Size: 48 KiB |
@@ -0,0 +1,21 @@
|
||||
rewards
|
||||
-116.045416124376
|
||||
-126.18022935469217
|
||||
-231.46338228458293
|
||||
-246.40481094689758
|
||||
-304.69493818839186
|
||||
-124.39609191913091
|
||||
-1.060003582878406
|
||||
-114.19659653048288
|
||||
-348.9745708742037
|
||||
-116.10811133324769
|
||||
-117.20146333694844
|
||||
-118.66206784602966
|
||||
-235.17836229762355
|
||||
-356.14054913290624
|
||||
-118.38579118156366
|
||||
-351.9415915140771
|
||||
-114.50877866098972
|
||||
-124.775484599685
|
||||
-226.47062962476875
|
||||
-121.48872909193936
|
||||
|
|
After Width: | Height: | Size: 79 KiB |
@@ -0,0 +1,301 @@
|
||||
rewards
|
||||
-1557.8518596631177
|
||||
-1354.7599369723537
|
||||
-1375.5732016629706
|
||||
-1493.8609739040871
|
||||
-1426.7116204537845
|
||||
-1235.7920755027762
|
||||
-1339.1647620443073
|
||||
-1544.2379906560486
|
||||
-1539.6232758780877
|
||||
-1549.5690058648204
|
||||
-1446.9193195793853
|
||||
-1520.2666688767558
|
||||
-1525.0116707122581
|
||||
-1379.136573640111
|
||||
-1532.702831768523
|
||||
-1484.7552963941637
|
||||
-1359.6699201737677
|
||||
-1349.6805649166854
|
||||
-1510.869999766432
|
||||
-1515.8398785434708
|
||||
-1447.4648656578254
|
||||
-1537.3822077872178
|
||||
-1249.6517039877456
|
||||
-1350.0302666965736
|
||||
-1529.4363372505607
|
||||
-1320.28204807604
|
||||
-1502.9248141320654
|
||||
-1545.4861772197075
|
||||
-1579.928789692619
|
||||
-1413.296070504152
|
||||
-1242.4673258663781
|
||||
-1403.8672028946078
|
||||
-1452.7199002523635
|
||||
-871.6071114009982
|
||||
-1324.1789316121412
|
||||
-1313.3348146041249
|
||||
-1059.8722927418046
|
||||
-1054.232673559123
|
||||
-973.8956270782459
|
||||
-972.9936641224186
|
||||
-972.9477399905655
|
||||
-947.0613443333731
|
||||
-737.3866328989184
|
||||
-958.6068164634295
|
||||
-739.6973395350705
|
||||
-886.8383108399455
|
||||
-775.1430379821574
|
||||
-937.3115016337417
|
||||
-700.875502951337
|
||||
-829.9396339144109
|
||||
-271.1629773396998
|
||||
-493.5460684734584
|
||||
-485.9321719313203
|
||||
-858.3735607086766
|
||||
-1145.3440084994113
|
||||
-1121.1338201339777
|
||||
-1191.5640831332366
|
||||
-1350.0425368846784
|
||||
-249.25438665107953
|
||||
-727.9051714734406
|
||||
-368.5579316240395
|
||||
-392.0611344939354
|
||||
-955.3231703741553
|
||||
-488.27956192035265
|
||||
-362.2734695759137
|
||||
-949.5440839122496
|
||||
-496.8460016912189
|
||||
-726.6871514929877
|
||||
-424.48641462866266
|
||||
-954.7075428204689
|
||||
-608.9650086409792
|
||||
-848.6059768900151
|
||||
-866.7052398755033
|
||||
-856.9846415044439
|
||||
-751.0342976129083
|
||||
-749.5118249469103
|
||||
-509.882299129811
|
||||
-506.56154097018043
|
||||
-906.0964475820368
|
||||
-1318.3941416286855
|
||||
-1422.2017011876615
|
||||
-1523.1661091894277
|
||||
-1209.2850593747999
|
||||
-1415.0972750475833
|
||||
-1533.2263827605834
|
||||
-1405.8345530072663
|
||||
-1244.3384723384913
|
||||
-1237.4704845061992
|
||||
-949.3394417935086
|
||||
-981.1855396112669
|
||||
-1241.224568444032
|
||||
-1033.118364799829
|
||||
-1017.2403725619487
|
||||
-981.9727804516916
|
||||
-853.1877724775591
|
||||
-869.0652369861646
|
||||
-1069.8265343327998
|
||||
-371.73173813891884
|
||||
-735.5887912713665
|
||||
-1262.050240428957
|
||||
-1242.985056062197
|
||||
-1191.6867713427482
|
||||
-1328.5323118458034
|
||||
-1015.5308653784714
|
||||
-895.3066515461381
|
||||
-994.1114862316568
|
||||
-761.4710321387583
|
||||
-717.6979056272868
|
||||
-782.302146467708
|
||||
-640.4913147345328
|
||||
-725.6469893076355
|
||||
-497.5346232085584
|
||||
-1027.1192149202325
|
||||
-950.0117149822681
|
||||
-956.1343737377374
|
||||
-708.9489626669097
|
||||
-964.5003064113283
|
||||
-611.9111516886613
|
||||
-612.3182791021098
|
||||
-1100.0047939174613
|
||||
-984.9262458612923
|
||||
-858.7106075590494
|
||||
-842.305917848386
|
||||
-745.9043991922597
|
||||
-741.2168858394704
|
||||
-1143.0750387284456
|
||||
-755.5257242325362
|
||||
-745.8440029056219
|
||||
-387.8717950334138
|
||||
-764.6628701051523
|
||||
-486.7967495537958
|
||||
-485.13357559164814
|
||||
-313.5415216767419
|
||||
-611.3450529954782
|
||||
-611.1570544377465
|
||||
-507.6456747676814
|
||||
-615.2032627013064
|
||||
-242.37988821149764
|
||||
-603.85498620892
|
||||
-352.2672241055367
|
||||
-155.99874664988383
|
||||
-615.4003063516313
|
||||
-384.9811293551548
|
||||
-498.80727354456315
|
||||
-407.6898591217813
|
||||
-1213.6383844696395
|
||||
-1122.2425748913884
|
||||
-592.4819308883913
|
||||
-478.2046833075051
|
||||
-891.0254788311132
|
||||
-482.40204115385
|
||||
-339.34676196677407
|
||||
-582.9985110154428
|
||||
-213.38243627478826
|
||||
-928.8434951613825
|
||||
-1545.5433749195483
|
||||
-1179.5016285049896
|
||||
-1211.9549773601925
|
||||
-1396.8082561792166
|
||||
-1318.073128824395
|
||||
-597.3837225413702
|
||||
-564.7793352410449
|
||||
-723.744223659601
|
||||
-653.0145534050461
|
||||
-847.6138123247009
|
||||
-385.62784320332867
|
||||
-245.25250602651928
|
||||
-117.55094416757835
|
||||
-864.0064774069044
|
||||
-124.30221387458867
|
||||
-244.4014050243669
|
||||
-1148.861754008653
|
||||
-914.4047868424254
|
||||
-765.9394408203351
|
||||
-124.05114610943177
|
||||
-605.7641303826842
|
||||
-616.3595829453579
|
||||
-375.5024692962698
|
||||
-253.51874076866997
|
||||
-240.08405245866714
|
||||
-503.96565579077225
|
||||
-606.7646526173963
|
||||
-502.6512112729435
|
||||
-746.404013238678
|
||||
-718.8658110051653
|
||||
-125.65808359856703
|
||||
-247.62256797883364
|
||||
-363.69852213666803
|
||||
-249.21801061415547
|
||||
-491.7724416523124
|
||||
-235.37050442527357
|
||||
-609.6026403583944
|
||||
-236.05731608228092
|
||||
-381.19853850450454
|
||||
-298.7683201867404
|
||||
-127.64145601534942
|
||||
-233.4300138495176
|
||||
-129.11243486763516
|
||||
-390.0092951263507
|
||||
-1000.7729892969854
|
||||
-249.60445310459787
|
||||
-253.02347910759622
|
||||
-129.04269174391223
|
||||
-360.6321251486308
|
||||
-377.26297602576534
|
||||
-124.98466986009481
|
||||
-245.47913567739212
|
||||
-127.0885254550411
|
||||
-118.11013006825459
|
||||
-128.8682755001942
|
||||
-497.3015586531096
|
||||
-340.77352433313484
|
||||
-514.4945799737978
|
||||
-503.24077308842783
|
||||
-627.9068157464455
|
||||
-511.39396524392146
|
||||
-763.8866112068075
|
||||
-741.7885082408757
|
||||
-617.4945380476306
|
||||
-950.3176437519387
|
||||
-643.4791402436576
|
||||
-511.9377874351982
|
||||
-573.6219349516633
|
||||
-564.1297823875693
|
||||
-242.06399233336583
|
||||
-496.4020380325518
|
||||
-360.56387982880364
|
||||
-495.4590728336022
|
||||
-503.7263345016764
|
||||
-122.47964616802327
|
||||
-254.16543926263168
|
||||
-614.5335268729743
|
||||
-234.3718017676852
|
||||
-301.27514663062874
|
||||
-387.64758894986204
|
||||
-368.74492411716415
|
||||
-364.43559131093593
|
||||
-160.6845848115533
|
||||
-504.1948947975429
|
||||
-246.51676032967683
|
||||
-251.5732500220603
|
||||
-600.1463819723879
|
||||
-247.17476928471288
|
||||
-381.924164337607
|
||||
-377.4773226068174
|
||||
-378.511830774651
|
||||
-126.69199895843033
|
||||
-365.0506645811703
|
||||
-130.45052114802874
|
||||
-374.37400288581813
|
||||
-502.37678159638887
|
||||
-374.43552658473055
|
||||
-241.157211525502
|
||||
-388.9597456642503
|
||||
-249.4412385534861
|
||||
-114.71395078439846
|
||||
-864.6882327286056
|
||||
-626.8144095971478
|
||||
-732.9226896140248
|
||||
-368.24767905020394
|
||||
-369.7425524469132
|
||||
-398.07832598184626
|
||||
-906.7113918582257
|
||||
-252.2343258180765
|
||||
-370.4258473086036
|
||||
-736.0203154396909
|
||||
-609.4605173515027
|
||||
-661.1255920773486
|
||||
-489.9605291008584
|
||||
-364.1671188501402
|
||||
-644.4029089587781
|
||||
-477.9510457677364
|
||||
-128.78294672880136
|
||||
-373.74382001694886
|
||||
-380.69931133982936
|
||||
-372.60275628381805
|
||||
-743.0410655515724
|
||||
-597.558847789258
|
||||
-387.94245652694394
|
||||
-725.3939448944484
|
||||
-409.1301313430852
|
||||
-491.8442467896486
|
||||
-123.0638156839621
|
||||
-377.9292326597324
|
||||
-489.27209762667974
|
||||
-255.63227821371257
|
||||
-379.5885382060625
|
||||
-370.2312967024669
|
||||
-250.94061817008688
|
||||
-131.2125308195906
|
||||
-600.3312016651868
|
||||
-130.84444772735733
|
||||
-312.6287688438562
|
||||
-382.4144610039701
|
||||
-259.03558003697265
|
||||
-224.92206667096863
|
||||
-376.81390821359685
|
||||
-382.39993489751646
|
||||
-380.25599578593636
|
||||
-610.1016672243638
|
||||
|
@@ -1,133 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 20:58:21
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-07-21 21:51:34
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add to system path
|
||||
|
||||
import datetime
|
||||
import gym
|
||||
import torch
|
||||
import argparse
|
||||
|
||||
from env import NormalizedActions,OUNoise
|
||||
from ddpg import DDPG
|
||||
from common.utils import save_results,make_dir
|
||||
from common.utils import plot_rewards,save_args
|
||||
|
||||
def get_args():
|
||||
""" Hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='DDPG',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='Pendulum-v1',type=str,help="name of environment")
|
||||
parser.add_argument('--train_eps',default=300,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--critic_lr',default=1e-3,type=float,help="learning rate of critic")
|
||||
parser.add_argument('--actor_lr',default=1e-4,type=float,help="learning rate of actor")
|
||||
parser.add_argument('--memory_capacity',default=8000,type=int,help="memory capacity")
|
||||
parser.add_argument('--batch_size',default=128,type=int)
|
||||
parser.add_argument('--target_update',default=2,type=int)
|
||||
parser.add_argument('--soft_tau',default=1e-2,type=float)
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results/' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models/' ) # path to save models
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
def env_agent_config(cfg,seed=1):
|
||||
env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声
|
||||
env.seed(seed) # 随机种子
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
agent = DDPG(n_states,n_actions,cfg)
|
||||
return env,agent
|
||||
def train(cfg, env, agent):
|
||||
print('Start training!')
|
||||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||||
ou_noise = OUNoise(env.action_space) # noise of action
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
ou_noise.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
i_step = 0
|
||||
while not done:
|
||||
i_step += 1
|
||||
action = agent.choose_action(state)
|
||||
action = ou_noise.get_action(action, i_step)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, reward, next_state, done)
|
||||
agent.update()
|
||||
state = next_state
|
||||
if (i_ep+1)%10 == 0:
|
||||
print(f'Env:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}')
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('Finish training!')
|
||||
return {'rewards':rewards,'ma_rewards':ma_rewards}
|
||||
|
||||
def test(cfg, env, agent):
|
||||
print('Start testing')
|
||||
print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.test_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
i_step = 0
|
||||
while not done:
|
||||
i_step += 1
|
||||
action = agent.choose_action(state)
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
state = next_state
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print(f"Epside:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.1f}")
|
||||
print('Finish testing!')
|
||||
return {'rewards':rewards,'ma_rewards':ma_rewards}
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
# training
|
||||
env,agent = env_agent_config(cfg,seed=1)
|
||||
res_dic = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
save_args(cfg)
|
||||
agent.save(path=cfg.model_path)
|
||||
save_results(res_dic, tag='train',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train")
|
||||
# testing
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=cfg.model_path)
|
||||
res_dic = test(cfg,env,agent)
|
||||
save_results(res_dic, tag='test',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="test")
|
||||
|
||||
@@ -0,0 +1,25 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
eval_per_episode: 5
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_DQN_20221031-001201
|
||||
max_steps: 200
|
||||
mode: test
|
||||
save_fig: true
|
||||
seed: 0
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
hidden_dim: 256
|
||||
lr: 0.0001
|
||||
target_update: 4
|
||||
@@ -0,0 +1,14 @@
|
||||
2022-10-31 00:13:43 - r - INFO: - n_states: 4, n_actions: 2
|
||||
2022-10-31 00:13:44 - r - INFO: - Start testing!
|
||||
2022-10-31 00:13:44 - r - INFO: - Env: CartPole-v1, Algorithm: DQN, Device: cuda
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 1/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 2/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 3/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 4/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 5/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 6/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 7/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 8/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 9/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Episode: 10/10, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:13:45 - r - INFO: - Finish testing!
|
||||
|
After Width: | Height: | Size: 25 KiB |
@@ -0,0 +1,11 @@
|
||||
episodes,rewards,steps
|
||||
0,200.0,200
|
||||
1,200.0,200
|
||||
2,200.0,200
|
||||
3,200.0,200
|
||||
4,200.0,200
|
||||
5,200.0,200
|
||||
6,200.0,200
|
||||
7,200.0,200
|
||||
8,200.0,200
|
||||
9,200.0,200
|
||||
|
@@ -0,0 +1,23 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: Acrobot-v1
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 100000
|
||||
mode: train
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 128
|
||||
buffer_size: 200000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
hidden_dim: 256
|
||||
lr: 0.002
|
||||
target_update: 4
|
||||
@@ -0,0 +1,104 @@
|
||||
2022-10-26 09:46:45 - r - INFO: - n_states: 6, n_actions: 3
|
||||
2022-10-26 09:46:48 - r - INFO: - Start training!
|
||||
2022-10-26 09:46:48 - r - INFO: - Env: Acrobot-v1, Algorithm: DQN, Device: cuda
|
||||
2022-10-26 09:46:50 - r - INFO: - Episode: 1/100, Reward: -861.00: Epislon: 0.178
|
||||
2022-10-26 09:46:50 - r - INFO: - Episode: 2/100, Reward: -252.00: Epislon: 0.111
|
||||
2022-10-26 09:46:50 - r - INFO: - Episode: 3/100, Reward: -196.00: Epislon: 0.078
|
||||
2022-10-26 09:46:51 - r - INFO: - Episode: 4/100, Reward: -390.00: Epislon: 0.041
|
||||
2022-10-26 09:46:52 - r - INFO: - Episode: 5/100, Reward: -371.00: Epislon: 0.025
|
||||
2022-10-26 09:46:52 - r - INFO: - Episode: 6/100, Reward: -237.00: Epislon: 0.019
|
||||
2022-10-26 09:46:52 - r - INFO: - Episode: 7/100, Reward: -227.00: Epislon: 0.016
|
||||
2022-10-26 09:46:53 - r - INFO: - Episode: 8/100, Reward: -228.00: Epislon: 0.014
|
||||
2022-10-26 09:46:53 - r - INFO: - Episode: 9/100, Reward: -305.00: Epislon: 0.012
|
||||
2022-10-26 09:46:54 - r - INFO: - Episode: 10/100, Reward: -234.00: Epislon: 0.011
|
||||
2022-10-26 09:46:54 - r - INFO: - Episode: 11/100, Reward: -204.00: Epislon: 0.011
|
||||
2022-10-26 09:46:55 - r - INFO: - Episode: 12/100, Reward: -277.00: Epislon: 0.010
|
||||
2022-10-26 09:46:55 - r - INFO: - Episode: 13/100, Reward: -148.00: Epislon: 0.010
|
||||
2022-10-26 09:46:56 - r - INFO: - Episode: 14/100, Reward: -372.00: Epislon: 0.010
|
||||
2022-10-26 09:46:56 - r - INFO: - Episode: 15/100, Reward: -273.00: Epislon: 0.010
|
||||
2022-10-26 09:46:56 - r - INFO: - Episode: 16/100, Reward: -105.00: Epislon: 0.010
|
||||
2022-10-26 09:46:56 - r - INFO: - Episode: 17/100, Reward: -79.00: Epislon: 0.010
|
||||
2022-10-26 09:46:57 - r - INFO: - Episode: 18/100, Reward: -112.00: Epislon: 0.010
|
||||
2022-10-26 09:46:57 - r - INFO: - Episode: 19/100, Reward: -276.00: Epislon: 0.010
|
||||
2022-10-26 09:46:57 - r - INFO: - Episode: 20/100, Reward: -148.00: Epislon: 0.010
|
||||
2022-10-26 09:46:58 - r - INFO: - Episode: 21/100, Reward: -201.00: Epislon: 0.010
|
||||
2022-10-26 09:46:58 - r - INFO: - Episode: 22/100, Reward: -173.00: Epislon: 0.010
|
||||
2022-10-26 09:46:58 - r - INFO: - Episode: 23/100, Reward: -226.00: Epislon: 0.010
|
||||
2022-10-26 09:46:59 - r - INFO: - Episode: 24/100, Reward: -154.00: Epislon: 0.010
|
||||
2022-10-26 09:46:59 - r - INFO: - Episode: 25/100, Reward: -269.00: Epislon: 0.010
|
||||
2022-10-26 09:46:59 - r - INFO: - Episode: 26/100, Reward: -191.00: Epislon: 0.010
|
||||
2022-10-26 09:47:00 - r - INFO: - Episode: 27/100, Reward: -177.00: Epislon: 0.010
|
||||
2022-10-26 09:47:00 - r - INFO: - Episode: 28/100, Reward: -209.00: Epislon: 0.010
|
||||
2022-10-26 09:47:00 - r - INFO: - Episode: 29/100, Reward: -116.00: Epislon: 0.010
|
||||
2022-10-26 09:47:00 - r - INFO: - Episode: 30/100, Reward: -117.00: Epislon: 0.010
|
||||
2022-10-26 09:47:01 - r - INFO: - Episode: 31/100, Reward: -121.00: Epislon: 0.010
|
||||
2022-10-26 09:47:01 - r - INFO: - Episode: 32/100, Reward: -208.00: Epislon: 0.010
|
||||
2022-10-26 09:47:01 - r - INFO: - Episode: 33/100, Reward: -147.00: Epislon: 0.010
|
||||
2022-10-26 09:47:02 - r - INFO: - Episode: 34/100, Reward: -104.00: Epislon: 0.010
|
||||
2022-10-26 09:47:02 - r - INFO: - Episode: 35/100, Reward: -161.00: Epislon: 0.010
|
||||
2022-10-26 09:47:02 - r - INFO: - Episode: 36/100, Reward: -144.00: Epislon: 0.010
|
||||
2022-10-26 09:47:02 - r - INFO: - Episode: 37/100, Reward: -131.00: Epislon: 0.010
|
||||
2022-10-26 09:47:03 - r - INFO: - Episode: 38/100, Reward: -226.00: Epislon: 0.010
|
||||
2022-10-26 09:47:03 - r - INFO: - Episode: 39/100, Reward: -117.00: Epislon: 0.010
|
||||
2022-10-26 09:47:03 - r - INFO: - Episode: 40/100, Reward: -344.00: Epislon: 0.010
|
||||
2022-10-26 09:47:04 - r - INFO: - Episode: 41/100, Reward: -123.00: Epislon: 0.010
|
||||
2022-10-26 09:47:04 - r - INFO: - Episode: 42/100, Reward: -232.00: Epislon: 0.010
|
||||
2022-10-26 09:47:04 - r - INFO: - Episode: 43/100, Reward: -190.00: Epislon: 0.010
|
||||
2022-10-26 09:47:05 - r - INFO: - Episode: 44/100, Reward: -176.00: Epislon: 0.010
|
||||
2022-10-26 09:47:05 - r - INFO: - Episode: 45/100, Reward: -139.00: Epislon: 0.010
|
||||
2022-10-26 09:47:06 - r - INFO: - Episode: 46/100, Reward: -410.00: Epislon: 0.010
|
||||
2022-10-26 09:47:06 - r - INFO: - Episode: 47/100, Reward: -115.00: Epislon: 0.010
|
||||
2022-10-26 09:47:06 - r - INFO: - Episode: 48/100, Reward: -118.00: Epislon: 0.010
|
||||
2022-10-26 09:47:06 - r - INFO: - Episode: 49/100, Reward: -113.00: Epislon: 0.010
|
||||
2022-10-26 09:47:07 - r - INFO: - Episode: 50/100, Reward: -355.00: Epislon: 0.010
|
||||
2022-10-26 09:47:07 - r - INFO: - Episode: 51/100, Reward: -110.00: Epislon: 0.010
|
||||
2022-10-26 09:47:07 - r - INFO: - Episode: 52/100, Reward: -148.00: Epislon: 0.010
|
||||
2022-10-26 09:47:08 - r - INFO: - Episode: 53/100, Reward: -135.00: Epislon: 0.010
|
||||
2022-10-26 09:47:08 - r - INFO: - Episode: 54/100, Reward: -220.00: Epislon: 0.010
|
||||
2022-10-26 09:47:08 - r - INFO: - Episode: 55/100, Reward: -157.00: Epislon: 0.010
|
||||
2022-10-26 09:47:09 - r - INFO: - Episode: 56/100, Reward: -130.00: Epislon: 0.010
|
||||
2022-10-26 09:47:09 - r - INFO: - Episode: 57/100, Reward: -150.00: Epislon: 0.010
|
||||
2022-10-26 09:47:09 - r - INFO: - Episode: 58/100, Reward: -254.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 59/100, Reward: -148.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 60/100, Reward: -108.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 61/100, Reward: -152.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 62/100, Reward: -107.00: Epislon: 0.010
|
||||
2022-10-26 09:47:10 - r - INFO: - Episode: 63/100, Reward: -110.00: Epislon: 0.010
|
||||
2022-10-26 09:47:11 - r - INFO: - Episode: 64/100, Reward: -266.00: Epislon: 0.010
|
||||
2022-10-26 09:47:11 - r - INFO: - Episode: 65/100, Reward: -344.00: Epislon: 0.010
|
||||
2022-10-26 09:47:12 - r - INFO: - Episode: 66/100, Reward: -93.00: Epislon: 0.010
|
||||
2022-10-26 09:47:12 - r - INFO: - Episode: 67/100, Reward: -113.00: Epislon: 0.010
|
||||
2022-10-26 09:47:12 - r - INFO: - Episode: 68/100, Reward: -191.00: Epislon: 0.010
|
||||
2022-10-26 09:47:12 - r - INFO: - Episode: 69/100, Reward: -102.00: Epislon: 0.010
|
||||
2022-10-26 09:47:13 - r - INFO: - Episode: 70/100, Reward: -187.00: Epislon: 0.010
|
||||
2022-10-26 09:47:13 - r - INFO: - Episode: 71/100, Reward: -158.00: Epislon: 0.010
|
||||
2022-10-26 09:47:13 - r - INFO: - Episode: 72/100, Reward: -166.00: Epislon: 0.010
|
||||
2022-10-26 09:47:14 - r - INFO: - Episode: 73/100, Reward: -202.00: Epislon: 0.010
|
||||
2022-10-26 09:47:14 - r - INFO: - Episode: 74/100, Reward: -179.00: Epislon: 0.010
|
||||
2022-10-26 09:47:14 - r - INFO: - Episode: 75/100, Reward: -150.00: Epislon: 0.010
|
||||
2022-10-26 09:47:14 - r - INFO: - Episode: 76/100, Reward: -170.00: Epislon: 0.010
|
||||
2022-10-26 09:47:15 - r - INFO: - Episode: 77/100, Reward: -149.00: Epislon: 0.010
|
||||
2022-10-26 09:47:15 - r - INFO: - Episode: 78/100, Reward: -119.00: Epislon: 0.010
|
||||
2022-10-26 09:47:15 - r - INFO: - Episode: 79/100, Reward: -115.00: Epislon: 0.010
|
||||
2022-10-26 09:47:15 - r - INFO: - Episode: 80/100, Reward: -97.00: Epislon: 0.010
|
||||
2022-10-26 09:47:16 - r - INFO: - Episode: 81/100, Reward: -153.00: Epislon: 0.010
|
||||
2022-10-26 09:47:16 - r - INFO: - Episode: 82/100, Reward: -97.00: Epislon: 0.010
|
||||
2022-10-26 09:47:16 - r - INFO: - Episode: 83/100, Reward: -211.00: Epislon: 0.010
|
||||
2022-10-26 09:47:16 - r - INFO: - Episode: 84/100, Reward: -195.00: Epislon: 0.010
|
||||
2022-10-26 09:47:17 - r - INFO: - Episode: 85/100, Reward: -125.00: Epislon: 0.010
|
||||
2022-10-26 09:47:17 - r - INFO: - Episode: 86/100, Reward: -155.00: Epislon: 0.010
|
||||
2022-10-26 09:47:17 - r - INFO: - Episode: 87/100, Reward: -151.00: Epislon: 0.010
|
||||
2022-10-26 09:47:18 - r - INFO: - Episode: 88/100, Reward: -194.00: Epislon: 0.010
|
||||
2022-10-26 09:47:18 - r - INFO: - Episode: 89/100, Reward: -188.00: Epislon: 0.010
|
||||
2022-10-26 09:47:18 - r - INFO: - Episode: 90/100, Reward: -195.00: Epislon: 0.010
|
||||
2022-10-26 09:47:19 - r - INFO: - Episode: 91/100, Reward: -141.00: Epislon: 0.010
|
||||
2022-10-26 09:47:19 - r - INFO: - Episode: 92/100, Reward: -132.00: Epislon: 0.010
|
||||
2022-10-26 09:47:19 - r - INFO: - Episode: 93/100, Reward: -127.00: Epislon: 0.010
|
||||
2022-10-26 09:47:19 - r - INFO: - Episode: 94/100, Reward: -195.00: Epislon: 0.010
|
||||
2022-10-26 09:47:20 - r - INFO: - Episode: 95/100, Reward: -152.00: Epislon: 0.010
|
||||
2022-10-26 09:47:20 - r - INFO: - Episode: 96/100, Reward: -145.00: Epislon: 0.010
|
||||
2022-10-26 09:47:20 - r - INFO: - Episode: 97/100, Reward: -123.00: Epislon: 0.010
|
||||
2022-10-26 09:47:20 - r - INFO: - Episode: 98/100, Reward: -176.00: Epislon: 0.010
|
||||
2022-10-26 09:47:21 - r - INFO: - Episode: 99/100, Reward: -180.00: Epislon: 0.010
|
||||
2022-10-26 09:47:21 - r - INFO: - Episode: 100/100, Reward: -124.00: Epislon: 0.010
|
||||
2022-10-26 09:47:21 - r - INFO: - Finish training!
|
||||
|
After Width: | Height: | Size: 55 KiB |
@@ -0,0 +1,101 @@
|
||||
episodes,rewards,steps
|
||||
0,-861.0,862
|
||||
1,-252.0,253
|
||||
2,-196.0,197
|
||||
3,-390.0,391
|
||||
4,-371.0,372
|
||||
5,-237.0,238
|
||||
6,-227.0,228
|
||||
7,-228.0,229
|
||||
8,-305.0,306
|
||||
9,-234.0,235
|
||||
10,-204.0,205
|
||||
11,-277.0,278
|
||||
12,-148.0,149
|
||||
13,-372.0,373
|
||||
14,-273.0,274
|
||||
15,-105.0,106
|
||||
16,-79.0,80
|
||||
17,-112.0,113
|
||||
18,-276.0,277
|
||||
19,-148.0,149
|
||||
20,-201.0,202
|
||||
21,-173.0,174
|
||||
22,-226.0,227
|
||||
23,-154.0,155
|
||||
24,-269.0,270
|
||||
25,-191.0,192
|
||||
26,-177.0,178
|
||||
27,-209.0,210
|
||||
28,-116.0,117
|
||||
29,-117.0,118
|
||||
30,-121.0,122
|
||||
31,-208.0,209
|
||||
32,-147.0,148
|
||||
33,-104.0,105
|
||||
34,-161.0,162
|
||||
35,-144.0,145
|
||||
36,-131.0,132
|
||||
37,-226.0,227
|
||||
38,-117.0,118
|
||||
39,-344.0,345
|
||||
40,-123.0,124
|
||||
41,-232.0,233
|
||||
42,-190.0,191
|
||||
43,-176.0,177
|
||||
44,-139.0,140
|
||||
45,-410.0,411
|
||||
46,-115.0,116
|
||||
47,-118.0,119
|
||||
48,-113.0,114
|
||||
49,-355.0,356
|
||||
50,-110.0,111
|
||||
51,-148.0,149
|
||||
52,-135.0,136
|
||||
53,-220.0,221
|
||||
54,-157.0,158
|
||||
55,-130.0,131
|
||||
56,-150.0,151
|
||||
57,-254.0,255
|
||||
58,-148.0,149
|
||||
59,-108.0,109
|
||||
60,-152.0,153
|
||||
61,-107.0,108
|
||||
62,-110.0,111
|
||||
63,-266.0,267
|
||||
64,-344.0,345
|
||||
65,-93.0,94
|
||||
66,-113.0,114
|
||||
67,-191.0,192
|
||||
68,-102.0,103
|
||||
69,-187.0,188
|
||||
70,-158.0,159
|
||||
71,-166.0,167
|
||||
72,-202.0,203
|
||||
73,-179.0,180
|
||||
74,-150.0,151
|
||||
75,-170.0,171
|
||||
76,-149.0,150
|
||||
77,-119.0,120
|
||||
78,-115.0,116
|
||||
79,-97.0,98
|
||||
80,-153.0,154
|
||||
81,-97.0,98
|
||||
82,-211.0,212
|
||||
83,-195.0,196
|
||||
84,-125.0,126
|
||||
85,-155.0,156
|
||||
86,-151.0,152
|
||||
87,-194.0,195
|
||||
88,-188.0,189
|
||||
89,-195.0,196
|
||||
90,-141.0,142
|
||||
91,-132.0,133
|
||||
92,-127.0,128
|
||||
93,-195.0,196
|
||||
94,-152.0,153
|
||||
95,-145.0,146
|
||||
96,-123.0,124
|
||||
97,-176.0,177
|
||||
98,-180.0,181
|
||||
99,-124.0,125
|
||||
|
@@ -0,0 +1,25 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
eval_eps: 10
|
||||
eval_per_episode: 5
|
||||
load_checkpoint: false
|
||||
load_path: tasks
|
||||
max_steps: 200
|
||||
mode: train
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
hidden_dim: 256
|
||||
lr: 0.0001
|
||||
target_update: 800
|
||||
@@ -0,0 +1,116 @@
|
||||
2022-10-31 00:12:01 - r - INFO: - n_states: 4, n_actions: 2
|
||||
2022-10-31 00:12:01 - r - INFO: - Start training!
|
||||
2022-10-31 00:12:01 - r - INFO: - Env: CartPole-v1, Algorithm: DQN, Device: cuda
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 1/100, Reward: 18.0, Step: 18
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 2/100, Reward: 35.0, Step: 35
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 3/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 4/100, Reward: 32.0, Step: 32
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 5/100, Reward: 16.0, Step: 16
|
||||
2022-10-31 00:12:04 - r - INFO: - Current episode 5 has the best eval reward: 15.30
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 6/100, Reward: 12.0, Step: 12
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 7/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 8/100, Reward: 15.0, Step: 15
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 9/100, Reward: 11.0, Step: 11
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 10/100, Reward: 15.0, Step: 15
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 11/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 12/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 13/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 14/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 15/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 16/100, Reward: 24.0, Step: 24
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 17/100, Reward: 8.0, Step: 8
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 18/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 19/100, Reward: 11.0, Step: 11
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 20/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 21/100, Reward: 12.0, Step: 12
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 22/100, Reward: 11.0, Step: 11
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 23/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:04 - r - INFO: - Episode: 24/100, Reward: 21.0, Step: 21
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 25/100, Reward: 14.0, Step: 14
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 26/100, Reward: 12.0, Step: 12
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 27/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 28/100, Reward: 11.0, Step: 11
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 29/100, Reward: 12.0, Step: 12
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 30/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 31/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 32/100, Reward: 13.0, Step: 13
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 33/100, Reward: 18.0, Step: 18
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 34/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 35/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 36/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 37/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 38/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 39/100, Reward: 10.0, Step: 10
|
||||
2022-10-31 00:12:05 - r - INFO: - Episode: 40/100, Reward: 8.0, Step: 8
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 41/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 42/100, Reward: 9.0, Step: 9
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 43/100, Reward: 20.0, Step: 20
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 44/100, Reward: 16.0, Step: 16
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 45/100, Reward: 17.0, Step: 17
|
||||
2022-10-31 00:12:06 - r - INFO: - Current episode 45 has the best eval reward: 17.50
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 46/100, Reward: 17.0, Step: 17
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 47/100, Reward: 17.0, Step: 17
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 48/100, Reward: 18.0, Step: 18
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 49/100, Reward: 25.0, Step: 25
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 50/100, Reward: 31.0, Step: 31
|
||||
2022-10-31 00:12:06 - r - INFO: - Current episode 50 has the best eval reward: 24.80
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 51/100, Reward: 22.0, Step: 22
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 52/100, Reward: 39.0, Step: 39
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 53/100, Reward: 36.0, Step: 36
|
||||
2022-10-31 00:12:06 - r - INFO: - Episode: 54/100, Reward: 26.0, Step: 26
|
||||
2022-10-31 00:12:07 - r - INFO: - Episode: 55/100, Reward: 33.0, Step: 33
|
||||
2022-10-31 00:12:07 - r - INFO: - Current episode 55 has the best eval reward: 38.70
|
||||
2022-10-31 00:12:07 - r - INFO: - Episode: 56/100, Reward: 56.0, Step: 56
|
||||
2022-10-31 00:12:07 - r - INFO: - Episode: 57/100, Reward: 112.0, Step: 112
|
||||
2022-10-31 00:12:07 - r - INFO: - Episode: 58/100, Reward: 101.0, Step: 101
|
||||
2022-10-31 00:12:08 - r - INFO: - Episode: 59/100, Reward: 69.0, Step: 69
|
||||
2022-10-31 00:12:08 - r - INFO: - Episode: 60/100, Reward: 75.0, Step: 75
|
||||
2022-10-31 00:12:08 - r - INFO: - Episode: 61/100, Reward: 182.0, Step: 182
|
||||
2022-10-31 00:12:09 - r - INFO: - Episode: 62/100, Reward: 52.0, Step: 52
|
||||
2022-10-31 00:12:09 - r - INFO: - Episode: 63/100, Reward: 67.0, Step: 67
|
||||
2022-10-31 00:12:09 - r - INFO: - Episode: 64/100, Reward: 53.0, Step: 53
|
||||
2022-10-31 00:12:09 - r - INFO: - Episode: 65/100, Reward: 119.0, Step: 119
|
||||
2022-10-31 00:12:10 - r - INFO: - Current episode 65 has the best eval reward: 171.90
|
||||
2022-10-31 00:12:10 - r - INFO: - Episode: 66/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:10 - r - INFO: - Episode: 67/100, Reward: 74.0, Step: 74
|
||||
2022-10-31 00:12:11 - r - INFO: - Episode: 68/100, Reward: 138.0, Step: 138
|
||||
2022-10-31 00:12:11 - r - INFO: - Episode: 69/100, Reward: 149.0, Step: 149
|
||||
2022-10-31 00:12:12 - r - INFO: - Episode: 70/100, Reward: 144.0, Step: 144
|
||||
2022-10-31 00:12:12 - r - INFO: - Current episode 70 has the best eval reward: 173.70
|
||||
2022-10-31 00:12:13 - r - INFO: - Episode: 71/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:13 - r - INFO: - Episode: 72/100, Reward: 198.0, Step: 198
|
||||
2022-10-31 00:12:14 - r - INFO: - Episode: 73/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:14 - r - INFO: - Episode: 74/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:15 - r - INFO: - Episode: 75/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:16 - r - INFO: - Current episode 75 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:16 - r - INFO: - Episode: 76/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:17 - r - INFO: - Episode: 77/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:17 - r - INFO: - Episode: 78/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:18 - r - INFO: - Episode: 79/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:19 - r - INFO: - Episode: 80/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:19 - r - INFO: - Current episode 80 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:20 - r - INFO: - Episode: 81/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:20 - r - INFO: - Episode: 82/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:21 - r - INFO: - Episode: 83/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:21 - r - INFO: - Episode: 84/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:22 - r - INFO: - Episode: 85/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:23 - r - INFO: - Current episode 85 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:23 - r - INFO: - Episode: 86/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:24 - r - INFO: - Episode: 87/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:25 - r - INFO: - Episode: 88/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:25 - r - INFO: - Episode: 89/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:26 - r - INFO: - Episode: 90/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:27 - r - INFO: - Current episode 90 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:27 - r - INFO: - Episode: 91/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:28 - r - INFO: - Episode: 92/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:28 - r - INFO: - Episode: 93/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:29 - r - INFO: - Episode: 94/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:29 - r - INFO: - Episode: 95/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:30 - r - INFO: - Current episode 95 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:31 - r - INFO: - Episode: 96/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:31 - r - INFO: - Episode: 97/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:32 - r - INFO: - Episode: 98/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:32 - r - INFO: - Episode: 99/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:33 - r - INFO: - Episode: 100/100, Reward: 200.0, Step: 200
|
||||
2022-10-31 00:12:33 - r - INFO: - Current episode 100 has the best eval reward: 200.00
|
||||
2022-10-31 00:12:33 - r - INFO: - Finish training!
|
||||
|
After Width: | Height: | Size: 43 KiB |
@@ -0,0 +1,101 @@
|
||||
episodes,rewards,steps
|
||||
0,18.0,18
|
||||
1,35.0,35
|
||||
2,13.0,13
|
||||
3,32.0,32
|
||||
4,16.0,16
|
||||
5,12.0,12
|
||||
6,13.0,13
|
||||
7,15.0,15
|
||||
8,11.0,11
|
||||
9,15.0,15
|
||||
10,9.0,9
|
||||
11,13.0,13
|
||||
12,13.0,13
|
||||
13,10.0,10
|
||||
14,9.0,9
|
||||
15,24.0,24
|
||||
16,8.0,8
|
||||
17,10.0,10
|
||||
18,11.0,11
|
||||
19,13.0,13
|
||||
20,12.0,12
|
||||
21,11.0,11
|
||||
22,9.0,9
|
||||
23,21.0,21
|
||||
24,14.0,14
|
||||
25,12.0,12
|
||||
26,9.0,9
|
||||
27,11.0,11
|
||||
28,12.0,12
|
||||
29,13.0,13
|
||||
30,10.0,10
|
||||
31,13.0,13
|
||||
32,18.0,18
|
||||
33,9.0,9
|
||||
34,10.0,10
|
||||
35,9.0,9
|
||||
36,10.0,10
|
||||
37,10.0,10
|
||||
38,10.0,10
|
||||
39,8.0,8
|
||||
40,9.0,9
|
||||
41,9.0,9
|
||||
42,20.0,20
|
||||
43,16.0,16
|
||||
44,17.0,17
|
||||
45,17.0,17
|
||||
46,17.0,17
|
||||
47,18.0,18
|
||||
48,25.0,25
|
||||
49,31.0,31
|
||||
50,22.0,22
|
||||
51,39.0,39
|
||||
52,36.0,36
|
||||
53,26.0,26
|
||||
54,33.0,33
|
||||
55,56.0,56
|
||||
56,112.0,112
|
||||
57,101.0,101
|
||||
58,69.0,69
|
||||
59,75.0,75
|
||||
60,182.0,182
|
||||
61,52.0,52
|
||||
62,67.0,67
|
||||
63,53.0,53
|
||||
64,119.0,119
|
||||
65,200.0,200
|
||||
66,74.0,74
|
||||
67,138.0,138
|
||||
68,149.0,149
|
||||
69,144.0,144
|
||||
70,200.0,200
|
||||
71,198.0,198
|
||||
72,200.0,200
|
||||
73,200.0,200
|
||||
74,200.0,200
|
||||
75,200.0,200
|
||||
76,200.0,200
|
||||
77,200.0,200
|
||||
78,200.0,200
|
||||
79,200.0,200
|
||||
80,200.0,200
|
||||
81,200.0,200
|
||||
82,200.0,200
|
||||
83,200.0,200
|
||||
84,200.0,200
|
||||
85,200.0,200
|
||||
86,200.0,200
|
||||
87,200.0,200
|
||||
88,200.0,200
|
||||
89,200.0,200
|
||||
90,200.0,200
|
||||
91,200.0,200
|
||||
92,200.0,200
|
||||
93,200.0,200
|
||||
94,200.0,200
|
||||
95,200.0,200
|
||||
96,200.0,200
|
||||
97,200.0,200
|
||||
98,200.0,200
|
||||
99,200.0,200
|
||||
|
22
projects/codes/DQN/config/Acrobot-v1_DQN_Test.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: Acrobot-v1
|
||||
mode: test
|
||||
load_checkpoint: true
|
||||
load_path: Train_Acrobot-v1_DQN_20221026-094645
|
||||
max_steps: 100000
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 128
|
||||
buffer_size: 200000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
lr: 0.002
|
||||
target_update: 4
|
||||
22
projects/codes/DQN/config/Acrobot-v1_DQN_Train.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: Acrobot-v1
|
||||
mode: train
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 100000
|
||||
save_fig: true
|
||||
seed: 1
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 128
|
||||
buffer_size: 200000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
lr: 0.002
|
||||
target_update: 4
|
||||
22
projects/codes/DQN/config/CartPole-v1_DQN_Test.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
mode: test
|
||||
load_checkpoint: true
|
||||
load_path: Train_CartPole-v1_DQN_20221031-001201
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 0
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 100
|
||||
algo_cfg:
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
lr: 0.0001
|
||||
target_update: 4
|
||||
22
projects/codes/DQN/config/CartPole-v1_DQN_Train.yaml
Normal file
@@ -0,0 +1,22 @@
|
||||
general_cfg:
|
||||
algo_name: DQN
|
||||
device: cuda
|
||||
env_name: CartPole-v1
|
||||
mode: train
|
||||
load_checkpoint: false
|
||||
load_path: Train_CartPole-v1_DQN_20221026-054757
|
||||
max_steps: 200
|
||||
save_fig: true
|
||||
seed: 0
|
||||
show_fig: false
|
||||
test_eps: 10
|
||||
train_eps: 200
|
||||
algo_cfg:
|
||||
batch_size: 64
|
||||
buffer_size: 100000
|
||||
epsilon_decay: 500
|
||||
epsilon_end: 0.01
|
||||
epsilon_start: 0.95
|
||||
gamma: 0.95
|
||||
lr: 0.0001
|
||||
target_update: 4
|
||||
38
projects/codes/DQN/config/config.py
Normal file
@@ -0,0 +1,38 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: JiangJi
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2022-10-30 00:37:33
|
||||
LastEditor: JiangJi
|
||||
LastEditTime: 2022-10-31 00:11:57
|
||||
Discription: default parameters of DQN
|
||||
'''
|
||||
from common.config import GeneralConfig,AlgoConfig
|
||||
class GeneralConfigDQN(GeneralConfig):
|
||||
def __init__(self) -> None:
|
||||
self.env_name = "CartPole-v1" # name of environment
|
||||
self.algo_name = "DQN" # name of algorithm
|
||||
self.mode = "train" # train or test
|
||||
self.seed = 1 # random seed
|
||||
self.device = "cuda" # device to use
|
||||
self.train_eps = 100 # number of episodes for training
|
||||
self.test_eps = 10 # number of episodes for testing
|
||||
self.max_steps = 200 # max steps for each episode
|
||||
self.load_checkpoint = False
|
||||
self.load_path = "tasks" # path to load model
|
||||
self.show_fig = False # show figure or not
|
||||
self.save_fig = True # save figure or not
|
||||
|
||||
class AlgoConfigDQN(AlgoConfig):
|
||||
def __init__(self) -> None:
|
||||
# set epsilon_start=epsilon_end can obtain fixed epsilon=epsilon_end
|
||||
self.epsilon_start = 0.95 # epsilon start value
|
||||
self.epsilon_end = 0.01 # epsilon end value
|
||||
self.epsilon_decay = 500 # epsilon decay rate
|
||||
self.hidden_dim = 256 # hidden_dim for MLP
|
||||
self.gamma = 0.95 # discount factor
|
||||
self.lr = 0.0001 # learning rate
|
||||
self.buffer_size = 100000 # size of replay buffer
|
||||
self.batch_size = 64 # batch size
|
||||
self.target_update = 800 # target network update frequency per steps
|
||||
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:50:49
|
||||
@LastEditor: John
|
||||
LastEditTime: 2022-08-29 23:30:08
|
||||
LastEditTime: 2022-10-31 00:07:19
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -22,27 +22,28 @@ import numpy as np
|
||||
class DQN:
|
||||
def __init__(self,model,memory,cfg):
|
||||
|
||||
self.n_actions = cfg['n_actions']
|
||||
self.device = torch.device(cfg['device'])
|
||||
self.gamma = cfg['gamma']
|
||||
self.n_actions = cfg.n_actions
|
||||
self.device = torch.device(cfg.device)
|
||||
self.gamma = cfg.gamma
|
||||
## e-greedy parameters
|
||||
self.sample_count = 0 # sample count for epsilon decay
|
||||
self.epsilon = cfg['epsilon_start']
|
||||
self.epsilon = cfg.epsilon_start
|
||||
self.sample_count = 0
|
||||
self.epsilon_start = cfg['epsilon_start']
|
||||
self.epsilon_end = cfg['epsilon_end']
|
||||
self.epsilon_decay = cfg['epsilon_decay']
|
||||
self.batch_size = cfg['batch_size']
|
||||
self.epsilon_start = cfg.epsilon_start
|
||||
self.epsilon_end = cfg.epsilon_end
|
||||
self.epsilon_decay = cfg.epsilon_decay
|
||||
self.batch_size = cfg.batch_size
|
||||
self.target_update = cfg.target_update
|
||||
self.policy_net = model.to(self.device)
|
||||
self.target_net = model.to(self.device)
|
||||
## copy parameters from policy net to target net
|
||||
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
# self.target_net.load_state_dict(self.policy_net.state_dict()) # or use this to copy parameters
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg['lr'])
|
||||
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
|
||||
self.memory = memory
|
||||
self.update_flag = False
|
||||
|
||||
|
||||
def sample_action(self, state):
|
||||
''' sample action with e-greedy policy
|
||||
'''
|
||||
@@ -58,6 +59,21 @@ class DQN:
|
||||
else:
|
||||
action = random.randrange(self.n_actions)
|
||||
return action
|
||||
# @torch.no_grad()
|
||||
# def sample_action(self, state):
|
||||
# ''' sample action with e-greedy policy
|
||||
# '''
|
||||
# self.sample_count += 1
|
||||
# # epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation
|
||||
# self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
# math.exp(-1. * self.sample_count / self.epsilon_decay)
|
||||
# if random.random() > self.epsilon:
|
||||
# state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(dim=0)
|
||||
# q_values = self.policy_net(state)
|
||||
# action = q_values.max(1)[1].item() # choose action corresponding to the maximum q value
|
||||
# else:
|
||||
# action = random.randrange(self.n_actions)
|
||||
# return action
|
||||
def predict_action(self,state):
|
||||
''' predict action
|
||||
'''
|
||||
@@ -99,14 +115,16 @@ class DQN:
|
||||
for param in self.policy_net.parameters():
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step()
|
||||
if self.sample_count % self.target_update == 0: # target net update, target_update means "C" in pseucodes
|
||||
self.target_net.load_state_dict(self.policy_net.state_dict())
|
||||
|
||||
def save_model(self, path):
|
||||
def save_model(self, fpath):
|
||||
from pathlib import Path
|
||||
# create path
|
||||
Path(path).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.target_net.state_dict(), f"{path}/checkpoint.pt")
|
||||
Path(fpath).mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.target_net.state_dict(), f"{fpath}/checkpoint.pt")
|
||||
|
||||
def load_model(self, path):
|
||||
self.target_net.load_state_dict(torch.load(f"{path}/checkpoint.pt"))
|
||||
def load_model(self, fpath):
|
||||
self.target_net.load_state_dict(torch.load(f"{fpath}/checkpoint.pt"))
|
||||
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
|
||||
param.data.copy_(target_param.data)
|
||||
|
||||
@@ -1 +0,0 @@
|
||||
{"algo_name": "DQN", "env_name": "Acrobot-v1", "train_eps": 100, "test_eps": 20, "gamma": 0.95, "epsilon_start": 0.95, "epsilon_end": 0.01, "epsilon_decay": 1500, "lr": 0.002, "memory_capacity": 200000, "batch_size": 128, "target_update": 4, "hidden_dim": 256, "device": "cuda", "seed": 10, "show_fig": false, "save_fig": true, "result_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/Acrobot-v1/20220824-124401/results", "model_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/Acrobot-v1/20220824-124401/models", "n_states": 6, "n_actions": 3}
|
||||
|
Before Width: | Height: | Size: 51 KiB |
@@ -1,21 +0,0 @@
|
||||
episodes,rewards
|
||||
0,-79.0
|
||||
1,-113.0
|
||||
2,-81.0
|
||||
3,-132.0
|
||||
4,-110.0
|
||||
5,-114.0
|
||||
6,-80.0
|
||||
7,-101.0
|
||||
8,-78.0
|
||||
9,-91.0
|
||||
10,-107.0
|
||||
11,-87.0
|
||||
12,-105.0
|
||||
13,-91.0
|
||||
14,-128.0
|
||||
15,-132.0
|
||||
16,-119.0
|
||||
17,-77.0
|
||||
18,-89.0
|
||||
19,-134.0
|
||||
|
|
Before Width: | Height: | Size: 54 KiB |
@@ -1,101 +0,0 @@
|
||||
episodes,rewards
|
||||
0,-500.0
|
||||
1,-500.0
|
||||
2,-500.0
|
||||
3,-370.0
|
||||
4,-449.0
|
||||
5,-500.0
|
||||
6,-312.0
|
||||
7,-374.0
|
||||
8,-180.0
|
||||
9,-154.0
|
||||
10,-137.0
|
||||
11,-185.0
|
||||
12,-135.0
|
||||
13,-302.0
|
||||
14,-146.0
|
||||
15,-137.0
|
||||
16,-119.0
|
||||
17,-149.0
|
||||
18,-217.0
|
||||
19,-191.0
|
||||
20,-157.0
|
||||
21,-166.0
|
||||
22,-138.0
|
||||
23,-135.0
|
||||
24,-182.0
|
||||
25,-130.0
|
||||
26,-175.0
|
||||
27,-222.0
|
||||
28,-133.0
|
||||
29,-108.0
|
||||
30,-250.0
|
||||
31,-119.0
|
||||
32,-135.0
|
||||
33,-148.0
|
||||
34,-194.0
|
||||
35,-194.0
|
||||
36,-186.0
|
||||
37,-131.0
|
||||
38,-185.0
|
||||
39,-79.0
|
||||
40,-129.0
|
||||
41,-271.0
|
||||
42,-117.0
|
||||
43,-159.0
|
||||
44,-156.0
|
||||
45,-117.0
|
||||
46,-158.0
|
||||
47,-153.0
|
||||
48,-119.0
|
||||
49,-164.0
|
||||
50,-134.0
|
||||
51,-231.0
|
||||
52,-117.0
|
||||
53,-119.0
|
||||
54,-136.0
|
||||
55,-173.0
|
||||
56,-202.0
|
||||
57,-133.0
|
||||
58,-142.0
|
||||
59,-169.0
|
||||
60,-137.0
|
||||
61,-123.0
|
||||
62,-205.0
|
||||
63,-107.0
|
||||
64,-194.0
|
||||
65,-150.0
|
||||
66,-143.0
|
||||
67,-218.0
|
||||
68,-145.0
|
||||
69,-90.0
|
||||
70,-107.0
|
||||
71,-169.0
|
||||
72,-125.0
|
||||
73,-142.0
|
||||
74,-145.0
|
||||
75,-94.0
|
||||
76,-150.0
|
||||
77,-134.0
|
||||
78,-159.0
|
||||
79,-137.0
|
||||
80,-146.0
|
||||
81,-191.0
|
||||
82,-242.0
|
||||
83,-117.0
|
||||
84,-92.0
|
||||
85,-193.0
|
||||
86,-239.0
|
||||
87,-173.0
|
||||
88,-140.0
|
||||
89,-157.0
|
||||
90,-133.0
|
||||
91,-148.0
|
||||
92,-87.0
|
||||
93,-398.0
|
||||
94,-98.0
|
||||
95,-121.0
|
||||
96,-102.0
|
||||
97,-120.0
|
||||
98,-195.0
|
||||
99,-219.0
|
||||
|
@@ -1,21 +0,0 @@
|
||||
{
|
||||
"algo_name": "DQN",
|
||||
"env_name": "CartPole-v0",
|
||||
"train_eps": 200,
|
||||
"test_eps": 20,
|
||||
"gamma": 0.95,
|
||||
"epsilon_start": 0.95,
|
||||
"epsilon_end": 0.01,
|
||||
"epsilon_decay": 500,
|
||||
"lr": 0.0001,
|
||||
"memory_capacity": 100000,
|
||||
"batch_size": 64,
|
||||
"target_update": 4,
|
||||
"hidden_dim": 256,
|
||||
"device": "cpu",
|
||||
"seed": 10,
|
||||
"result_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v0/20220823-173936/results",
|
||||
"model_path": "C:\\Users\\jiangji\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v0/20220823-173936/models",
|
||||
"show_fig": false,
|
||||
"save_fig": true
|
||||
}
|
||||
|
Before Width: | Height: | Size: 27 KiB |
|
Before Width: | Height: | Size: 38 KiB |
@@ -1,201 +0,0 @@
|
||||
episodes,rewards
|
||||
0,38.0
|
||||
1,16.0
|
||||
2,37.0
|
||||
3,15.0
|
||||
4,22.0
|
||||
5,34.0
|
||||
6,20.0
|
||||
7,12.0
|
||||
8,16.0
|
||||
9,14.0
|
||||
10,13.0
|
||||
11,21.0
|
||||
12,14.0
|
||||
13,12.0
|
||||
14,17.0
|
||||
15,12.0
|
||||
16,10.0
|
||||
17,14.0
|
||||
18,10.0
|
||||
19,10.0
|
||||
20,16.0
|
||||
21,9.0
|
||||
22,14.0
|
||||
23,13.0
|
||||
24,10.0
|
||||
25,9.0
|
||||
26,12.0
|
||||
27,12.0
|
||||
28,14.0
|
||||
29,11.0
|
||||
30,9.0
|
||||
31,8.0
|
||||
32,9.0
|
||||
33,11.0
|
||||
34,12.0
|
||||
35,10.0
|
||||
36,11.0
|
||||
37,10.0
|
||||
38,10.0
|
||||
39,18.0
|
||||
40,13.0
|
||||
41,15.0
|
||||
42,10.0
|
||||
43,9.0
|
||||
44,14.0
|
||||
45,14.0
|
||||
46,23.0
|
||||
47,17.0
|
||||
48,15.0
|
||||
49,15.0
|
||||
50,20.0
|
||||
51,28.0
|
||||
52,36.0
|
||||
53,36.0
|
||||
54,23.0
|
||||
55,27.0
|
||||
56,53.0
|
||||
57,19.0
|
||||
58,35.0
|
||||
59,62.0
|
||||
60,57.0
|
||||
61,38.0
|
||||
62,61.0
|
||||
63,65.0
|
||||
64,58.0
|
||||
65,43.0
|
||||
66,67.0
|
||||
67,56.0
|
||||
68,91.0
|
||||
69,128.0
|
||||
70,71.0
|
||||
71,126.0
|
||||
72,100.0
|
||||
73,200.0
|
||||
74,200.0
|
||||
75,200.0
|
||||
76,200.0
|
||||
77,200.0
|
||||
78,200.0
|
||||
79,200.0
|
||||
80,200.0
|
||||
81,200.0
|
||||
82,200.0
|
||||
83,200.0
|
||||
84,200.0
|
||||
85,200.0
|
||||
86,200.0
|
||||
87,200.0
|
||||
88,200.0
|
||||
89,200.0
|
||||
90,200.0
|
||||
91,200.0
|
||||
92,200.0
|
||||
93,200.0
|
||||
94,200.0
|
||||
95,200.0
|
||||
96,200.0
|
||||
97,200.0
|
||||
98,200.0
|
||||
99,200.0
|
||||
100,200.0
|
||||
101,200.0
|
||||
102,200.0
|
||||
103,200.0
|
||||
104,200.0
|
||||
105,200.0
|
||||
106,200.0
|
||||
107,200.0
|
||||
108,200.0
|
||||
109,200.0
|
||||
110,200.0
|
||||
111,200.0
|
||||
112,200.0
|
||||
113,200.0
|
||||
114,200.0
|
||||
115,200.0
|
||||
116,200.0
|
||||
117,200.0
|
||||
118,200.0
|
||||
119,200.0
|
||||
120,200.0
|
||||
121,200.0
|
||||
122,200.0
|
||||
123,200.0
|
||||
124,200.0
|
||||
125,200.0
|
||||
126,200.0
|
||||
127,200.0
|
||||
128,200.0
|
||||
129,200.0
|
||||
130,200.0
|
||||
131,200.0
|
||||
132,200.0
|
||||
133,200.0
|
||||
134,200.0
|
||||
135,200.0
|
||||
136,200.0
|
||||
137,200.0
|
||||
138,200.0
|
||||
139,200.0
|
||||
140,200.0
|
||||
141,200.0
|
||||
142,200.0
|
||||
143,200.0
|
||||
144,200.0
|
||||
145,200.0
|
||||
146,200.0
|
||||
147,200.0
|
||||
148,200.0
|
||||
149,200.0
|
||||
150,200.0
|
||||
151,200.0
|
||||
152,200.0
|
||||
153,200.0
|
||||
154,200.0
|
||||
155,200.0
|
||||
156,200.0
|
||||
157,200.0
|
||||
158,200.0
|
||||
159,200.0
|
||||
160,200.0
|
||||
161,200.0
|
||||
162,200.0
|
||||
163,200.0
|
||||
164,200.0
|
||||
165,200.0
|
||||
166,200.0
|
||||
167,200.0
|
||||
168,200.0
|
||||
169,200.0
|
||||
170,200.0
|
||||
171,200.0
|
||||
172,200.0
|
||||
173,200.0
|
||||
174,200.0
|
||||
175,200.0
|
||||
176,200.0
|
||||
177,200.0
|
||||
178,200.0
|
||||
179,200.0
|
||||
180,200.0
|
||||
181,200.0
|
||||
182,200.0
|
||||
183,200.0
|
||||
184,200.0
|
||||
185,200.0
|
||||
186,200.0
|
||||
187,200.0
|
||||
188,200.0
|
||||
189,200.0
|
||||
190,200.0
|
||||
191,200.0
|
||||
192,200.0
|
||||
193,200.0
|
||||
194,200.0
|
||||
195,200.0
|
||||
196,200.0
|
||||
197,200.0
|
||||
198,200.0
|
||||
199,200.0
|
||||
|
@@ -1,24 +0,0 @@
|
||||
{
|
||||
"algo_name": "DQN",
|
||||
"env_name": "CartPole-v1",
|
||||
"train_eps": 2000,
|
||||
"test_eps": 20,
|
||||
"ep_max_steps": 100000,
|
||||
"gamma": 0.99,
|
||||
"epsilon_start": 0.95,
|
||||
"epsilon_end": 0.01,
|
||||
"epsilon_decay": 6000,
|
||||
"lr": 1e-05,
|
||||
"memory_capacity": 200000,
|
||||
"batch_size": 64,
|
||||
"target_update": 4,
|
||||
"hidden_dim": 256,
|
||||
"device": "cuda",
|
||||
"seed": 10,
|
||||
"show_fig": false,
|
||||
"save_fig": true,
|
||||
"result_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v1/20220828-214702/results",
|
||||
"model_path": "C:\\Users\\24438\\Desktop\\rl-tutorials\\codes\\DQN/outputs/CartPole-v1/20220828-214702/models",
|
||||
"n_states": 4,
|
||||
"n_actions": 2
|
||||
}
|
||||
|
Before Width: | Height: | Size: 50 KiB |