143 lines
6.4 KiB
Python
143 lines
6.4 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Author: JiangJi
|
|
Email: johnjim0816@gmail.com
|
|
Date: 2022-10-30 01:19:43
|
|
LastEditor: JiangJi
|
|
LastEditTime: 2022-11-01 01:21:12
|
|
Discription: continuous action space
|
|
'''
|
|
import sys,os
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
|
parent_path = os.path.dirname(curr_path) # parent path
|
|
sys.path.append(parent_path) # add path to system path
|
|
|
|
import gym
|
|
from common.utils import all_seed,merge_class_attrs
|
|
from common.launcher import Launcher
|
|
from common.memories import PGReplay
|
|
from common.models import ActorSoftmaxTanh,Critic
|
|
from envs.register import register_env
|
|
from a2c import A2C
|
|
from config.config import GeneralConfigA2C,AlgoConfigA2C
|
|
|
|
class Main(Launcher):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigA2C())
|
|
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigA2C())
|
|
def env_agent_config(self,cfg,logger):
|
|
''' create env and agent
|
|
'''
|
|
register_env(cfg.env_name)
|
|
env = gym.make(cfg.env_name,new_step_api=True) # create env
|
|
if cfg.seed !=0: # set random seed
|
|
all_seed(env,seed = cfg.seed)
|
|
try: # state dimension
|
|
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
|
except AttributeError:
|
|
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
|
n_actions = env.action_space.n # action dimension
|
|
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
|
# update to cfg paramters
|
|
setattr(cfg, 'n_states', n_states)
|
|
setattr(cfg, 'n_actions', n_actions)
|
|
models = {'Actor':ActorSoftmaxTanh(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
|
|
memories = {'ACMemory':PGReplay()}
|
|
agent = A2C(models,memories,cfg)
|
|
for k,v in models.items():
|
|
logger.info(f"{k} model name: {type(v).__name__}")
|
|
for k,v in memories.items():
|
|
logger.info(f"{k} memory name: {type(v).__name__}")
|
|
logger.info(f"agent name: {type(agent).__name__}")
|
|
return env,agent
|
|
def train_one_episode(self, env, agent, cfg):
|
|
ep_reward = 0 # reward per episode
|
|
ep_step = 0 # step per episode
|
|
ep_entropy = 0 # entropy per episode
|
|
state = env.reset() # reset and obtain initial state
|
|
for _ in range(cfg.max_steps):
|
|
action = agent.sample_action(state) # sample action
|
|
next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
|
agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
|
state = next_state # update state
|
|
ep_reward += reward
|
|
ep_entropy += agent.entropy
|
|
ep_step += 1
|
|
if terminated:
|
|
break
|
|
agent.update(next_state,ep_entropy) # update agent
|
|
return agent,ep_reward,ep_step
|
|
def test_one_episode(self, env, agent, cfg):
|
|
ep_reward = 0 # reward per episode
|
|
ep_step = 0 # step per episode
|
|
state = env.reset() # reset and obtain initial state
|
|
for _ in range(cfg.max_steps):
|
|
action = agent.predict_action(state) # predict action
|
|
next_state, reward, terminated, truncated , info = env.step(action)
|
|
state = next_state
|
|
ep_reward += reward
|
|
ep_step += 1
|
|
if terminated:
|
|
break
|
|
return agent,ep_reward,ep_step
|
|
# def train(self,cfg,env,agent,logger):
|
|
# logger.info("Start training!")
|
|
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
|
# rewards = [] # record rewards for all episodes
|
|
# steps = [] # record steps for all episodes
|
|
# for i_ep in range(cfg.train_eps):
|
|
# ep_reward = 0 # reward per episode
|
|
# ep_step = 0 # step per episode
|
|
# ep_entropy = 0
|
|
# state = env.reset() # reset and obtain initial state
|
|
# for _ in range(cfg.max_steps):
|
|
# action = agent.sample_action(state) # sample action
|
|
# next_state, reward, terminated, truncated , info = env.step(action) # update env and return transitions
|
|
# agent.memory.push((agent.value,agent.log_prob,reward)) # save transitions
|
|
# state = next_state # update state
|
|
# ep_reward += reward
|
|
# ep_entropy += agent.entropy
|
|
# ep_step += 1
|
|
# if terminated:
|
|
# break
|
|
# agent.update(next_state,ep_entropy) # update agent
|
|
# rewards.append(ep_reward)
|
|
# steps.append(ep_step)
|
|
# logger.info(f"Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
|
# logger.info("Finish training!")
|
|
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
|
# def test(self,cfg,env,agent,logger):
|
|
# logger.info("Start testing!")
|
|
# logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
|
# rewards = [] # record rewards for all episodes
|
|
# steps = [] # record steps for all episodes
|
|
# for i_ep in range(cfg.test_eps):
|
|
# ep_reward = 0 # reward per episode
|
|
# ep_step = 0
|
|
# state = env.reset() # reset and obtain initial state
|
|
# for _ in range(cfg.max_steps):
|
|
# action = agent.predict_action(state) # predict action
|
|
# next_state, reward, terminated, truncated , info = env.step(action)
|
|
# state = next_state
|
|
# ep_reward += reward
|
|
# ep_step += 1
|
|
# if terminated:
|
|
# break
|
|
# rewards.append(ep_reward)
|
|
# steps.append(ep_step)
|
|
# logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step}")
|
|
# logger.info("Finish testing!")
|
|
# env.close()
|
|
# return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
|
|
|
if __name__ == "__main__":
|
|
main = Main()
|
|
main.run()
|
|
|
|
|
|
|
|
|