39 lines
1.5 KiB
Python
39 lines
1.5 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Author: JiangJi
|
|
Email: johnjim0816@gmail.com
|
|
Date: 2022-10-30 00:37:33
|
|
LastEditor: JiangJi
|
|
LastEditTime: 2022-10-31 00:11:57
|
|
Discription: default parameters of DQN
|
|
'''
|
|
from common.config import GeneralConfig,AlgoConfig
|
|
class GeneralConfigDQN(GeneralConfig):
|
|
def __init__(self) -> None:
|
|
self.env_name = "CartPole-v1" # name of environment
|
|
self.algo_name = "DQN" # name of algorithm
|
|
self.mode = "train" # train or test
|
|
self.seed = 1 # random seed
|
|
self.device = "cuda" # device to use
|
|
self.train_eps = 100 # number of episodes for training
|
|
self.test_eps = 10 # number of episodes for testing
|
|
self.max_steps = 200 # max steps for each episode
|
|
self.load_checkpoint = False
|
|
self.load_path = "tasks" # path to load model
|
|
self.show_fig = False # show figure or not
|
|
self.save_fig = True # save figure or not
|
|
|
|
class AlgoConfigDQN(AlgoConfig):
|
|
def __init__(self) -> None:
|
|
# set epsilon_start=epsilon_end can obtain fixed epsilon=epsilon_end
|
|
self.epsilon_start = 0.95 # epsilon start value
|
|
self.epsilon_end = 0.01 # epsilon end value
|
|
self.epsilon_decay = 500 # epsilon decay rate
|
|
self.hidden_dim = 256 # hidden_dim for MLP
|
|
self.gamma = 0.95 # discount factor
|
|
self.lr = 0.0001 # learning rate
|
|
self.buffer_size = 100000 # size of replay buffer
|
|
self.batch_size = 64 # batch size
|
|
self.target_update = 800 # target network update frequency per steps
|