84 lines
3.2 KiB
Python
84 lines
3.2 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
'''
|
|
Author: JiangJi
|
|
Email: johnjim0816@gmail.com
|
|
Date: 2021-11-07 18:10:37
|
|
LastEditor: JiangJi
|
|
LastEditTime: 2021-11-19 18:34:05
|
|
Discription:
|
|
'''
|
|
|
|
import sys,os
|
|
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
|
parent_path = os.path.dirname(curr_path) # 父路径
|
|
sys.path.append(parent_path) # 添加路径到系统路径
|
|
|
|
import gym
|
|
import torch
|
|
import datetime
|
|
|
|
from common.utils import save_results, make_dir
|
|
from common.utils import plot_rewards
|
|
from DoubleDQN.agent import DoubleDQN
|
|
from DoubleDQN.train import train,test
|
|
|
|
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
|
algo_name = 'DoubleDQN' # 算法名称
|
|
env_name = 'CartPole-v0' # 环境名称
|
|
class DoubleDQNConfig:
|
|
def __init__(self):
|
|
self.algo_name = algo_name # 算法名称
|
|
self.env_name = env_name # 环境名称
|
|
self.device = torch.device(
|
|
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
self.train_eps = 200 # 训练的回合数
|
|
self.test_eps = 30 # 测试的回合数
|
|
self.gamma = 0.95 # 强化学习中的折扣因子
|
|
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
|
|
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
|
self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率
|
|
self.lr = 0.0001 # 学习率
|
|
self.memory_capacity = 100000 # 经验回放的容量
|
|
self.batch_size = 64 # mini-batch SGD中的批量大小
|
|
self.target_update = 2 # 目标网络的更新频率
|
|
self.hidden_dim = 256 # 网络隐藏层
|
|
class PlotConfig:
|
|
''' 绘图相关参数设置
|
|
'''
|
|
|
|
def __init__(self) -> None:
|
|
self.algo_name = algo_name # 算法名称
|
|
self.env_name = env_name # 环境名称
|
|
self.device = torch.device(
|
|
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
|
|
self.result_path = curr_path + "/outputs/" + self.env_name + \
|
|
'/' + curr_time + '/results/' # 保存结果的路径
|
|
self.model_path = curr_path + "/outputs/" + self.env_name + \
|
|
'/' + curr_time + '/models/' # 保存模型的路径
|
|
self.save = True # 是否保存图片
|
|
|
|
def env_agent_config(cfg,seed=1):
|
|
env = gym.make(cfg.env_name)
|
|
env.seed(seed)
|
|
state_dim = env.observation_space.shape[0]
|
|
action_dim = env.action_space.n
|
|
agent = DoubleDQN(state_dim,action_dim,cfg)
|
|
return env,agent
|
|
|
|
cfg = DoubleDQNConfig()
|
|
plot_cfg = PlotConfig()
|
|
# 训练
|
|
env,agent = env_agent_config(cfg,seed=1)
|
|
rewards, ma_rewards = train(cfg, env, agent)
|
|
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
|
|
agent.save(path=plot_cfg.model_path) # 保存模型
|
|
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) # 保存结果
|
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
|
|
# 测试
|
|
env,agent = env_agent_config(cfg,seed=10)
|
|
agent.load(path=plot_cfg.model_path) # 导入模型
|
|
rewards,ma_rewards = test(cfg,env,agent)
|
|
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
|
|
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果
|