update Qlearning

This commit is contained in:
JohnJim0816
2021-03-12 16:54:22 +08:00
parent 7b739fb437
commit e2c9b6f958
12 changed files with 59 additions and 117 deletions

View File

@@ -5,11 +5,10 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-03-11 19:16:27
LastEditTime: 2021-03-12 16:48:25
Discription:
Environment:
'''
from functools import update_wrapper
import numpy as np
import math
import torch
@@ -53,11 +52,11 @@ class QLearning(object):
import dill
torch.save(
obj=self.Q_table,
f=path,
f=path+"Qleaning_model.pkl",
pickle_module=dill
)
def load(self, path):
'''从文件中读取数据到 Q表格
'''
self.Q_table =torch.load(f='prod_dls.pkl',pickle_module=dill)
import dill
self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill)

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-03-11 19:22:50
LastEditTime: 2021-03-12 16:52:26
Discription:
Environment:
'''
@@ -15,101 +15,101 @@ sys.path.append(os.getcwd()) # 添加当前终端路径
import argparse
import gym
import datetime
from QLearning.plot import plot
from QLearning.utils import save_results
from envs.gridworld_env import CliffWalkingWapper, FrozenLakeWapper
from QLearning.agent import QLearning
from common.plot import plot_rewards
from common.utils import save_results
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
os.mkdir(RESULT_PATH)
def get_args():
'''训练的模型参数
'''
parser = argparse.ArgumentParser()
class QlearningConfig:
'''训练相关参数'''
parser.add_argument("--n_episodes", default=500,
type=int, help="训练的最大episode数目")
'''算法相关参数'''
parser.add_argument("--gamma", default=0.9,
type=float, help="reward的衰减率")
parser.add_argument("--epsilon_start", default=0.99,
type=float, help="e-greedy策略中初始epsilon")
parser.add_argument("--epsilon_end", default=0.01,
type=float, help="e-greedy策略中的结束epsilon")
parser.add_argument("--epsilon_decay", default=200,
type=float, help="e-greedy策略中epsilon的衰减率")
parser.add_argument("--lr", default=0.1, type=float, help="学习率")
config = parser.parse_args()
return config
def __init__(self):
self.n_episodes = 200 # 训练的episode数目
self.gamma = 0.9 # reward的衰减率
self.epsilon_start = 0.99 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率
self.lr = 0.1 # 学习率
def train(cfg,env,agent):
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
# env = FrozenLakeWapper(env)
rewards = [] # 记录所有episode的reward,
rewards = [] # 记录所有episode的reward
ma_rewards = [] # 滑动平均的reward
steps = [] # 记录所有episode的steps
for i_episode in range(cfg.n_episodes):
ep_reward = 0 # 记录每个episode的reward
ep_steps = 0 # 记录每个episode走了多少step
obs = env.reset() # 重置环境, 重新开一局即开始新的一个episode
state = env.reset() # 重置环境, 重新开一局即开始新的一个episode
while True:
action = agent.choose_action(obs) # 根据算法选择一个动作
next_obs, reward, done, _ = env.step(action) # 与环境进行一交互
# 训练 Q-learning算法
agent.update(obs, action, reward, next_obs, done) # 不需要下一步的action
obs = next_obs # 存储上一个观察值
action = agent.choose_action(state) # 根据算法选择一个动作
next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互
agent.update(state, action, reward, next_state, done) # Q-learning算法更新
state = next_state # 存储上一个观察值
ep_reward += reward
ep_steps += 1 # 计算step数
if done:
break
steps.append(ep_steps)
rewards.append(ep_reward)
# 计算滑动平均的reward
if rewards:
rewards.append(rewards[-1]*0.9+ep_reward*0.1)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
rewards.append(ep_reward)
ma_rewards.append(ep_reward)
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
plot(rewards)
if not os.path.exists(SAVED_MODEL_PATH):
os.mkdir(SAVED_MODEL_PATH)
agent.save(SAVED_MODEL_PATH+'Q_table.pkl') # 训练结束,保存模型
'''存储reward等相关结果'''
save_results(rewards,tag='train',result_path=RESULT_PATH)
return rewards,ma_rewards
def eval(cfg,env,agent):
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
# env = FrozenLakeWapper(env)
rewards = [] # 记录所有episode的reward,
rewards = [] # 记录所有episode的reward
ma_rewards = [] # 滑动平均的reward
steps = [] # 记录所有episode的steps
for i_episode in range(20):
for i_episode in range(cfg.n_episodes):
ep_reward = 0 # 记录每个episode的reward
ep_steps = 0 # 记录每个episode走了多少step
obs = env.reset() # 重置环境, 重新开一局即开始新的一个episode
state = env.reset() # 重置环境, 重新开一局即开始新的一个episode
while True:
action = agent.choose_action(obs) # 根据算法选择一个动作
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
obs = next_obs # 存储上一个观察值
action = agent.choose_action(state) # 根据算法选择一个动作
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
state = next_state # 存储上一个观察值
ep_reward += reward
ep_steps += 1 # 计算step数
if done:
break
steps.append(ep_steps)
rewards.append(ep_reward)
# 计算滑动平均的reward
if rewards:
rewards.append(rewards[-1]*0.9+ep_reward*0.1)
if ma_rewards:
ma_rewards.append(rewards[-1]*0.9+ep_reward*0.1)
else:
rewards.append(ep_reward)
ma_rewards.append(ep_reward)
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
plot(rewards)
'''存储reward等相关结果'''
save_results(rewards,tag='eval',result_path=RESULT_PATH)
return rewards,ma_rewards
if __name__ == "__main__":
cfg = get_args()
cfg = QlearningConfig()
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
env = CliffWalkingWapper(env)
n_actions = env.action_space.n
agent = QLearning(n_actions,cfg)
train(cfg,env,agent)
eval(cfg,env,agent)
rewards,ma_rewards = train(cfg,env,agent)
agent.save(path=SAVED_MODEL_PATH)
# eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = "On-Policy First-Visit MC Control",path=RESULT_PATH)

View File

@@ -1,35 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-10-07 20:57:11
LastEditor: John
LastEditTime: 2020-10-07 21:00:29
Discription:
Environment:
'''
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import os
def plot(item,ylabel='rewards'):
sns.set()
plt.figure()
plt.plot(np.arange(len(item)), item)
plt.title(ylabel+' of Q-learning')
plt.ylabel(ylabel)
plt.xlabel('episodes')
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
plt.show()
if __name__ == "__main__":
output_path = os.path.dirname(__file__)+"/result/"
rewards=np.load(output_path+"rewards_train.npy", )
MA_rewards=np.load(output_path+"MA_rewards_train.npy")
steps = np.load(output_path+"steps_train.npy")
plot(rewards)
plot(MA_rewards,ylabel='moving_average_rewards')
plot(steps,ylabel='steps')

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

View File

@@ -1,22 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-11-23 13:44:52
LastEditor: John
LastEditTime: 2021-03-11 19:18:34
Discription:
Environment:
'''
import os
import numpy as np
def save_results(rewards,tag='train',result_path='./result'):
'''保存reward等结果
'''
if not os.path.exists(result_path): # 检测是否存在文件夹
os.mkdir(result_path)
np.save(result_path+'rewards_'+tag+'.npy', rewards)
print('results saved!')