This commit is contained in:
johnjim0816
2021-12-29 15:06:20 +08:00
parent bd51b5a7ad
commit 89abbc5ebb
31 changed files with 108 additions and 115 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

View File

@@ -25,6 +25,7 @@ class Config:
self.env_name = 'CartPole-v0' # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十
self.seed = 10 # 随机种子置0则不设置随机种子
self.train_eps = 200 # 训练的回合数
self.test_eps = 30 # 测试的回合数
################################################################################
@@ -41,7 +42,7 @@ class Config:
self.hidden_dim = 256 # 网络隐藏层
################################################################################
################################# 保存结果相关参数 ################################
################################# 保存结果相关参数 ##############################
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
@@ -50,17 +51,17 @@ class Config:
################################################################################
def env_agent_config(cfg, seed=1):
def env_agent_config(cfg):
''' 创建环境和智能体
'''
env = gym.make(cfg.env_name) # 创建环境
state_dim = env.observation_space.shape[0] # 状态维度
action_dim = env.action_space.n # 动作维度
agent = DQN(state_dim, action_dim, cfg) # 创建智能体
if seed !=0: # 设置随机种子
torch.manual_seed(seed)
env.seed(seed)
np.random.seed(seed)
if cfg.seed !=0: # 设置随机种子
torch.manual_seed(cfg.seed)
env.seed(cfg.seed)
np.random.seed(cfg.seed)
return env, agent
@@ -94,15 +95,17 @@ def train(cfg, env, agent):
if (i_ep + 1) % 10 == 0:
print('回合:{}/{}, 奖励:{}'.format(i_ep + 1, cfg.train_eps, ep_reward))
print('完成训练!')
env.close()
return rewards, ma_rewards
def test(cfg, env, agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0
############# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0 ###############
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
################################################################################
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.test_eps):
@@ -122,13 +125,14 @@ def test(cfg, env, agent):
ma_rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
print('完成测试!')
env.close()
return rewards, ma_rewards
if __name__ == "__main__":
cfg = Config()
# 训练
env, agent = env_agent_config(cfg, seed=1)
env, agent = env_agent_config(cfg)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=cfg.model_path) # 保存模型
@@ -136,7 +140,7 @@ if __name__ == "__main__":
path=cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg, seed=10)
env, agent = env_agent_config(cfg)
agent.load(path=cfg.model_path) # 导入模型
rewards, ma_rewards = test(cfg, env, agent)
save_results(rewards, ma_rewards, tag='test',

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

View File

@@ -5,7 +5,7 @@ Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-11-07 18:10:37
LastEditor: JiangJi
LastEditTime: 2021-11-19 18:34:05
LastEditTime: 2021-12-29 15:02:30
Discription:
'''
@@ -20,20 +20,22 @@ import datetime
from common.utils import save_results, make_dir
from common.utils import plot_rewards
from DoubleDQN.agent import DoubleDQN
from DoubleDQN.train import train,test
from DoubleDQN.double_dqn import DoubleDQN
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
algo_name = 'DoubleDQN' # 算法名称
env_name = 'CartPole-v0' # 环境名称
class DoubleDQNConfig:
class Config:
def __init__(self):
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
################################## 环境超参数 ###################################
self.algo_name = 'DoubleDQN' # 算法名称
self.env_name = 'CartPole-v0' # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
self.train_eps = 200 # 训练的回合数
self.test_eps = 30 # 测试的回合数
################################################################################
################################## 算法超参数 ###################################
self.gamma = 0.95 # 强化学习中的折扣因子
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
@@ -43,20 +45,16 @@ class DoubleDQNConfig:
self.batch_size = 64 # mini-batch SGD中的批量大小
self.target_update = 2 # 目标网络的更新频率
self.hidden_dim = 256 # 网络隐藏层
class PlotConfig:
''' 绘图相关参数设置
'''
################################################################################
def __init__(self) -> None:
self.algo_name = algo_name # 算法名称
self.env_name = env_name # 环境名称
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测GPU
################################# 保存结果相关参数 ##############################
self.result_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/results/' # 保存结果的路径
self.model_path = curr_path + "/outputs/" + self.env_name + \
'/' + curr_time + '/models/' # 保存模型的路径
self.save = True # 是否保存图片
self.save = True # 是否保存图片
################################################################################
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env_name)
@@ -66,18 +64,81 @@ def env_agent_config(cfg,seed=1):
agent = DoubleDQN(state_dim,action_dim,cfg)
return env,agent
cfg = DoubleDQNConfig()
plot_cfg = PlotConfig()
# 训练
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=plot_cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果
# 测试
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=plot_cfg.model_path) # 导入模型
rewards,ma_rewards = test(cfg,env,agent)
save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果
def train(cfg,env,agent):
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
state = next_state
agent.update()
if done:
break
if i_ep % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
if (i_ep+1)%10 == 0:
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward}')
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成训练!')
env.close()
return rewards,ma_rewards
def test(cfg,env,agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
############# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0 ###############
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
################################################################################
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.test_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
print('完成测试!')
env.close()
return rewards,ma_rewards
if __name__ == "__main__":
cfg = Config()
# 训练
env, agent = env_agent_config(cfg)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹
agent.save(path=cfg.model_path) # 保存模型
save_results(rewards, ma_rewards, tag='train',
path=cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果
# 测试
env, agent = env_agent_config(cfg)
agent.load(path=cfg.model_path) # 导入模型
rewards, ma_rewards = test(cfg, env, agent)
save_results(rewards, ma_rewards, tag='test',
path=cfg.result_path) # 保存结果
plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果

View File

@@ -1,73 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: JiangJi
Email: johnjim0816@gmail.com
Date: 2021-11-07 18:10:37
LastEditor: JiangJi
LastEditTime: 2021-11-19 18:34:05
Discription:
'''
import sys,os
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
parent_path = os.path.dirname(curr_path) # 父路径
sys.path.append(parent_path) # 添加路径到系统路径
def train(cfg,env,agent):
print('开始训练!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.train_eps):
ep_reward = 0 # 记录一回合内的奖励
state = env.reset() # 重置环境,返回初始状态
while True:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
state = next_state
agent.update()
if done:
break
if i_ep % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
if (i_ep+1)%10 == 0:
print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward}')
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('完成训练!')
return rewards,ma_rewards
def test(cfg,env,agent):
print('开始测试!')
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
# 由于测试不需要使用epsilon-greedy策略所以相应的值设置为0
cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon
cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon
rewards = [] # 记录所有回合的奖励
ma_rewards = [] # 记录所有回合的滑动平均奖励
for i_ep in range(cfg.test_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}")
print('完成测试!')
return rewards,ma_rewards

View File

@@ -1,5 +1,7 @@
## 记录笔者更新的日志
**2021.12.28-1**:将```task.py```中的两个Config类合并为一个并加以注释便于阅读从DQN算法开始更新
**2021.12.22-3**:将```agent.py```更改为对应的算法名称,便于区分如```dqn```与```dqn_cnn```的情况
**2021.12.22-2**:简化了代码结构,将原来的```train.py```和```task.py```等合并到```task.py```中
**2021.12.22-1**:简化了代码结构,将原来的```model.py```和```memory.py```等合并到```agent.py```中,```plot.py```的内容合并到```common.utils.py```中

View File

@@ -19,7 +19,6 @@ def train(cfg,env,agent):
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
if ()
print("回合数:{}/{},奖励{:.1f}".format(i_ep+1, cfg.train_eps,ep_reward))
print('完成训练!')
return rewards,ma_rewards