This commit is contained in:
johnjim0816
2021-05-07 16:31:25 +08:00
parent 4b96f5a6b0
commit 659065e9db
161 changed files with 1963 additions and 1693 deletions

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-09 20:25:52
@LastEditor: John
LastEditTime: 2021-03-31 00:56:32
LastEditTime: 2021-05-04 14:50:17
@Discription:
@Environment: python 3.7.7
'''
@@ -26,6 +26,7 @@ class DDPG:
self.target_critic = Critic(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
self.target_actor = Actor(state_dim, action_dim, cfg.hidden_dim).to(cfg.device)
# copy parameters to target net
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
target_param.data.copy_(param.data)
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
@@ -42,7 +43,6 @@ class DDPG:
def choose_action(self, state):
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
action = self.actor(state)
# torch.detach()用于切断反向传播
return action.detach().cpu().numpy()[0, 0]
def update(self):
@@ -50,13 +50,13 @@ class DDPG:
return
state, action, reward, next_state, done = self.memory.sample(
self.batch_size)
# 将所有变量转为张量
# convert variables to Tensor
state = torch.FloatTensor(state).to(self.device)
next_state = torch.FloatTensor(next_state).to(self.device)
action = torch.FloatTensor(action).to(self.device)
reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device)
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device)
# 注意critic将(s_t,a)作为输入
policy_loss = self.critic(state, self.actor(state))
policy_loss = -policy_loss.mean()
next_action = self.target_actor(next_state)

View File

@@ -1,94 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 20:58:21
@LastEditor: John
LastEditTime: 2021-04-29 01:58:50
@Discription:
@Environment: python 3.7.7
'''
import sys,os
from pathlib import Path
import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import torch
import gym
import numpy as np
import datetime
from DDPG.agent import DDPG
from DDPG.env import NormalizedActions,OUNoise
from common.plot import plot_rewards
from common.utils import save_results
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
if not os.path.exists(curr_path+"/saved_model/"): os.mkdir(curr_path+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH): os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
if not os.path.exists(curr_path+"/results/"): os.mkdir(curr_path+"/results/")
if not os.path.exists(RESULT_PATH): os.mkdir(RESULT_PATH)
class DDPGConfig:
def __init__(self):
self.env = 'Pendulum-v0'
self.algo = 'DDPG'
self.gamma = 0.99
self.critic_lr = 1e-3
self.actor_lr = 1e-4
self.memory_capacity = 10000
self.batch_size = 128
self.train_eps =300
self.eval_eps = 200
self.eval_steps = 200
self.target_update = 4
self.hidden_dim = 30
self.soft_tau=1e-2
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def train(cfg,env,agent):
print('Start to train ! ')
ou_noise = OUNoise(env.action_space) # action noise
rewards = []
ma_rewards = [] # moving average rewards
ep_steps = []
for i_episode in range(cfg.train_eps):
state = env.reset()
ou_noise.reset()
done = False
ep_reward = 0
i_step = 0
while not done:
i_step += 1
action = agent.choose_action(state)
action = ou_noise.get_action(action, i_step) # 即paper中的random process
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
agent.update()
state = next_state
print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward))
ep_steps.append(i_step)
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Complete training')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DDPGConfig()
env = NormalizedActions(gym.make("Pendulum-v0"))
env.seed(1) # 设置env随机种子
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
agent = DDPG(state_dim,action_dim,cfg)
rewards,ma_rewards = train(cfg,env,agent)
agent.save(path=SAVED_MODEL_PATH)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 69 KiB

135
codes/DDPG/task0_train.py Normal file
View File

@@ -0,0 +1,135 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 20:58:21
@LastEditor: John
LastEditTime: 2021-05-04 14:49:45
@Discription:
@Environment: python 3.7.7
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import datetime
import gym
import torch
from DDPG.env import NormalizedActions, OUNoise
from DDPG.agent import DDPG
from common.utils import save_results,make_dir
from common.plot import plot_rewards
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
class DDPGConfig:
def __init__(self):
self.algo = 'DDPG'
self.env = 'Pendulum-v0' # env name
self.result_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/models/' # path to save results
self.gamma = 0.99
self.critic_lr = 1e-3
self.actor_lr = 1e-4
self.memory_capacity = 10000
self.batch_size = 128
self.train_eps = 300
self.eval_eps = 50
self.eval_steps = 200
self.target_update = 4
self.hidden_dim = 30
self.soft_tau = 1e-2
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu")
def env_agent_config(cfg,seed=1):
env = NormalizedActions(gym.make(cfg.env))
env.seed(seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
agent = DDPG(state_dim,action_dim,cfg)
return env,agent
def train(cfg, env, agent):
print('Start to train ! ')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
ou_noise = OUNoise(env.action_space) # action noise
rewards = []
ma_rewards = [] # moving average rewards
for i_episode in range(cfg.train_eps):
state = env.reset()
ou_noise.reset()
done = False
ep_reward = 0
i_step = 0
while not done:
i_step += 1
action = agent.choose_action(state)
action = ou_noise.get_action(
action, i_step) # 即paper中的random process
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
agent.update()
state = next_state
print('Episode:{}/{}, Reward:{}'.format(i_episode+1, cfg.train_eps, ep_reward))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Complete training')
return rewards, ma_rewards
def eval(cfg, env, agent):
print('Start to Eval ! ')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moving average rewards
for i_episode in range(cfg.eval_eps):
state = env.reset()
done = False
ep_reward = 0
i_step = 0
while not done:
i_step += 1
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
state = next_state
print('Episode:{}/{}, Reward:{}'.format(i_episode+1, cfg.train_eps, ep_reward))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Complete Eval')
return rewards, ma_rewards
if __name__ == "__main__":
cfg = DDPGConfig()
# train
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)
# eval
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)

View File

@@ -1,6 +1,7 @@
# DQN
#TODO
## 原理简介
DQN是Q-leanning算法的优化和延伸Q-leaning中使用有限的Q表存储值的信息而DQN中则用神经网络替代Q表存储信息这样更适用于高维的情况相关知识基础可参考[datawhale李宏毅笔记-Q学习](https://datawhalechina.github.io/easy-rl/#/chapter6/chapter6)。
论文方面主要可以参考两篇一篇就是2013年谷歌DeepMind团队的[Playing Atari with Deep Reinforcement Learning](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf)一篇是也是他们团队后来在Nature杂志上发表的[Human-level control through deep reinforcement learning](https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf)。后者在算法层面增加target q-net也可以叫做Nature DQN。
@@ -15,7 +16,7 @@ https://blog.csdn.net/JohnJim0/article/details/109557173)
<img src="assets/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pvaG5KaW0w,size_16,color_FFFFFF,t_70.png" alt="img" style="zoom:50%;" />
## 代码实
## 代码实
### RL接口
@@ -24,23 +25,26 @@ https://blog.csdn.net/JohnJim0/article/details/109557173)
for i_episode in range(MAX_EPISODES):
state = env.reset() # reset环境状态
for i_step in range(MAX_STEPS):
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action) # 更新环境参数
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
agent.update() # 每步更新网络
state = next_state # 跳转到下一个状态
if done:
break
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action) # 更新环境参数
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
agent.update() # 每步更新网络
state = next_state # 跳转到下一个状态
if done:
break
```
如上首先需要循环多个episode训练在每个episode中首先需要重置环境然后开始探索每个episode加一个MAX_STEPS(也可以使用while not done, 加这个max_steps有时是因为比如gym环境训练目标就是在200个step下达到200的reward),接下来的流程如下:
每个episode加一个MAX_STEPS也可以使用while not done, 加这个max_steps有时是因为比如gym环境训练目标就是在200个step下达到200的reward或者是当完成一个episode的步数较多时也可以设置基本流程跟所有伪代码一致如下:
1. agent选择动作
2. 环境根据agent的动作反馈出新的state和reward
2. 环境根据agent的动作反馈出next_state和reward
3. agent进行更新如有memory就会将transition(包含staterewardaction等)存入memory中
4. 跳转到下一个状态
如果提前done了就跳出for循环进行下一个episode的训练。
5. 如果done了就跳出循环进行下一个episode的训练。
想要实现完整的算法还需要创建QnetReplaybuffer等类
### 两个Q网络
前面讲了Nature DQN中有两个Q网络一个是policy_net一个是延时更新的target_net两个网络的结构是一模一样的如下(见```model.py```)
上文讲了Nature DQN中有两个Q网络一个是policy_net一个是延时更新的target_net两个网络的结构是一模一样的如下(见```model.py```)注意DQN使用的Qnet就是全连接网络即FCH
```python
import torch.nn as nn
import torch.nn.functional as F
@@ -62,30 +66,12 @@ class FCN(nn.Module):
x = F.relu(self.fc2(x))
return self.fc3(x)
```
输入为state输出为action注意根据state和action的维度调整隐藏层的层数这里设为128
输入为state_dim输出为action_dim包含一个128维度的隐藏层这里根据需要可增加隐藏层维度和数量然后一般使用relu激活函数这里跟深度学习的网路设置是一样的。
### Replay Buffer
然后就是Replay Memory了其作用主要是是克服经验数据的相关性correlated data和非平稳分布non-stationary distribution问题实现如下(见```memory.py```)
在```agent.py```中我们定义强化学习算法,包括```choose_action```和```update```两个主要函数,初始化中:
```python
self.policy_net = FCN(state_dim, action_dim).to(self.device)
self.target_net = FCN(state_dim, action_dim).to(self.device)
# target_net的初始模型参数完全复制policy_net
self.target_net.load_state_dict(self.policy_net.state_dict())
self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
# 可查parameters()与state_dict()的区别前者require_grad=True
```
可以看到policy_net跟target_net结构和初始参数一样但在更新的时候target是每隔一段episode更新的如下(见```main.py```)
```python
# 更新target network复制DQN中的所有weights and biases
if i_episode % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
```
可以调整```cfg.target_update```注意该变量不要调得太大否则会收敛很慢我们最后保存的模型也是这个target_net如下(见```agent.py```)
```python
def save_model(self,path):
torch.save(self.target_net.state_dict(), path)
```
### Replay Memory
然后就是Replay Memory了如下(见```memory.py```)
```python
import random
import numpy as np
@@ -111,11 +97,120 @@ class ReplayBuffer:
def __len__(self):
return len(self.buffer)
```
其实比较简单主要包括push和sample两个步骤push是将transitions放到memory中sample是从memory随机抽取一些transition。
最后结果如下:
参数capacity表示buffer的容量主要包括push和sample两个步骤push是将transitions放到memory中sample是从memory随机抽取一些transition。
![rewards_curve_train](assets/rewards_curve_train.png)
### Agent类
在```agent.py```中我们定义强化学习算法类,包括```choose_action```(选择动作使用e-greedy策略时会多一个```predict```函数,下面会将到)和```update```(更新)等函数。
在类中建立两个网络以及optimizer和memory
```python
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # copy params from policy net
target_param.data.copy_(param.data)
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
self.memory = ReplayBuffer(cfg.memory_capacity)
```
然后是选择action
```python
def choose_action(self, state):
'''选择动作
'''
self.frame_idx += 1
if random.random() > self.epsilon(self.frame_idx):
action = self.predict(state)
else:
action = random.randrange(self.action_dim)
return action
```
这里使用e-greedy策略即设置一个参数epsilon如果生成的随机数大于epsilon就根据网络预测的选择action否则还是随机选择action这个epsilon是会逐渐减小的可以使用线性或者指数减小的方式但不会减小到零这样在训练稳定时还能保持一定的探索这部分可以学习探索与利用(exploration and exploition)相关知识。
上面讲到的预测函数其实就是根据state选取q值最大的action如下
```python
def predict(self,state):
with torch.no_grad():
state = torch.tensor([state], device=self.device, dtype=torch.float32)
q_values = self.policy_net(state)
action = q_values.max(1)[1].item()
```
然后是更新函数了:
```python
def update(self):
if len(self.memory) < self.batch_size:
return
# 从memory中随机采样transition
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
self.batch_size)
'''转为张量
例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]])'''
state_batch = torch.tensor(
state_batch, device=self.device, dtype=torch.float)
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(
1) # 例如tensor([[1],...,[0]])
reward_batch = torch.tensor(
reward_batch, device=self.device, dtype=torch.float) # tensor([1., 1.,...,1])
next_state_batch = torch.tensor(
next_state_batch, device=self.device, dtype=torch.float)
done_batch = torch.tensor(np.float32(
done_batch), device=self.device)
'''计算当前(s_t,a)对应的Q(s_t, a)'''
'''torch.gather:对于a=torch.Tensor([[1,2],[3,4]]),那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]])'''
q_values = self.policy_net(state_batch).gather(
dim=1, index=action_batch) # 等价于self.forward
# 计算所有next states的V(s_{t+1})即通过target_net中选取reward最大的对应states
next_q_values = self.target_net(next_state_batch).max(
1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,])
# 计算 expected_q_value
# 对于终止状态此时done_batch[0]=1, 对应的expected_q_value等于reward
expected_q_values = reward_batch + \
self.gamma * next_q_values * (1-done_batch)
# self.loss = F.smooth_l1_loss(q_values,expected_q_values.unsqueeze(1)) # 计算 Huber loss
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算 均方误差loss
# 优化模型
self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step
# loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分
loss.backward()
# for param in self.policy_net.parameters(): # clip防止梯度爆炸
# param.grad.data.clamp_(-1, 1)
self.optimizer.step() # 更新模型
```
更新遵循伪代码的以下部分:
<img src="assets/image-20210507162813393.png" alt="image-20210507162813393" style="zoom:50%;" />
首先从replay buffer中选取一个batch的数据计算loss然后进行minibatch SGD。
然后是保存与加载模型的部分,如下:
```python
def save(self, path):
torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth')
def load(self, path):
self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth'))
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
param.data.copy_(target_param.data)
```
### 实验结果
训练结果如下:
<img src="assets/train_rewards_curve.png" alt="train_rewards_curve" style="zoom: 67%;" />
<img src="assets/eval_rewards_curve.png" alt="eval_rewards_curve" style="zoom:67%;" />
## 参考

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:50:49
@LastEditor: John
LastEditTime: 2021-04-29 22:19:18
LastEditTime: 2021-05-07 16:30:05
@Discription:
@Environment: python 3.7.7
'''
@@ -35,15 +35,13 @@ class DQN:
(cfg.epsilon_start - cfg.epsilon_end) * \
math.exp(-1. * frame_idx / cfg.epsilon_decay)
self.batch_size = cfg.batch_size
self.policy_net = MLP(state_dim, action_dim,
hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(state_dim, action_dim,
hidden_dim=cfg.hidden_dim).to(self.device)
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # copy params from policy net
target_param.data.copy_(param.data)
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
self.loss = 0
self.memory = ReplayBuffer(cfg.memory_capacity)
def choose_action(self, state):
'''选择动作
@@ -92,11 +90,11 @@ class DQN:
expected_q_values = reward_batch + \
self.gamma * next_q_values * (1-done_batch)
# self.loss = F.smooth_l1_loss(q_values,expected_q_values.unsqueeze(1)) # 计算 Huber loss
self.loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算 均方误差loss
loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算 均方误差loss
# 优化模型
self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step
# loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分
self.loss.backward()
loss.backward()
# for param in self.policy_net.parameters(): # clip防止梯度爆炸
# param.grad.data.clamp_(-1, 1)
self.optimizer.step() # 更新模型

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

270
codes/DQN/task0_train.ipynb Normal file

File diff suppressed because one or more lines are too long

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
LastEditTime: 2021-04-29 22:23:38
LastEditTime: 2021-05-05 16:49:15
@Discription:
@Environment: python 3.7.7
'''
@@ -14,20 +14,17 @@ curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import datetime
import torch
import gym
import torch
import datetime
from common.utils import save_results, make_dir, del_empty_dir
from common.utils import save_results, make_dir
from common.plot import plot_rewards
from DQN.agent import DQN
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
class DQNConfig:
def __init__(self):
self.algo = "DQN" # name of algo
@@ -35,21 +32,21 @@ class DQNConfig:
self.result_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/models/' # path to save results
self.train_eps = 300 # 训练的episode数目
'/'+curr_time+'/models/' # path to save models
self.train_eps = 300 # max trainng episodes
self.eval_eps = 50 # number of episodes for evaluating
self.gamma = 0.95
self.epsilon_start = 0.90 # e-greedy策略的初始epsilon
self.epsilon_start = 0.90 # start epsilon of e-greedy policy
self.epsilon_end = 0.01
self.epsilon_decay = 500
self.lr = 0.0001 # learning rate
self.memory_capacity = 100000 # Replay Memory容量
self.memory_capacity = 100000 # capacity of Replay Memory
self.batch_size = 64
self.target_update = 2 # target net的更新频率
self.target_update = 4 # update frequency of target net
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
self.hidden_dim = 256 # 神经网络隐藏层维度
"cuda" if torch.cuda.is_available() else "cpu") # check gpu
self.hidden_dim = 256 # hidden size of net
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env)
env.seed(seed)
@@ -63,7 +60,7 @@ def train(cfg, env, agent):
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moveing average reward
for i_episode in range(cfg.train_eps):
for i_ep in range(cfg.train_eps):
state = env.reset()
done = False
ep_reward = 0
@@ -76,11 +73,12 @@ def train(cfg, env, agent):
agent.update()
if done:
break
if i_episode % cfg.target_update == 0:
if (i_ep+1) % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print('Episode:{}/{}, Reward:{}'.format(i_episode+1, cfg.train_eps, ep_reward))
if (i_ep+1)%10 == 0:
print('Episode:{}/{}, Reward:{}'.format(i_ep+1, cfg.train_eps, ep_reward))
rewards.append(ep_reward)
# 计算滑动窗口的reward
# save ma rewards
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
@@ -89,15 +87,17 @@ def train(cfg, env, agent):
return rewards, ma_rewards
def eval(cfg,env,agent):
rewards = [] # 记录所有episode的reward
ma_rewards = [] # 滑动平均的reward
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moving average rewards
for i_ep in range(cfg.eval_eps):
ep_reward = 0 # 记录每个episode的reward
state = env.reset() # 重置环境, 重新开一局即开始新的一个episode
ep_reward = 0 # reward per episode
state = env.reset()
while True:
action = agent.predict(state) # 根据算法选择一个动作
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
state = next_state # 存储上一个观察值
action = agent.predict(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
@@ -106,11 +106,15 @@ def eval(cfg,env,agent):
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
if (i_ep+1)%10 == 10:
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
print('Complete evaling')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DQNConfig()
# train
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
@@ -118,7 +122,7 @@ if __name__ == "__main__":
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)
# eval
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)

View File

@@ -1,2 +0,0 @@
# DQN with cnn
原理与[DQN](../DQN)相同,只是将神经网络换成卷积神经网络,用于二维观测信息(state或obervation)

View File

@@ -1,107 +0,0 @@
import random
import math
import torch
import torch.optim as optim
import torch.nn.functional as F
from DQN_cnn.memory import ReplayBuffer
from DQN_cnn.model import CNN
class DQNcnn:
def __init__(self, screen_height,screen_width, action_dim, cfg):
self.device = cfg.device
self.action_dim = action_dim
self.gamma = cfg.gamma
# e-greedy策略相关参数
self.actions_count = 0
self.epsilon = 0
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.batch_size = cfg.batch_size
self.policy_net = CNN(screen_height, screen_width,
action_dim).to(self.device)
self.target_net = CNN(screen_height, screen_width,
action_dim).to(self.device)
self.target_net.load_state_dict(self.policy_net.state_dict()) # target_net的初始模型参数完全复制policy_net
self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
self.optimizer = optim.RMSprop(self.policy_net.parameters(),lr = cfg.lr) # 可查parameters()与state_dict()的区别前者require_grad=True
self.loss = 0
self.memory = ReplayBuffer(cfg.memory_capacity)
def choose_action(self, state):
'''选择动作
Args:
state [array]: [description]
Returns:
action [array]: [description]
'''
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.actions_count / self.epsilon_decay)
self.actions_count += 1
if random.random() > self.epsilon:
with torch.no_grad():
q_value = self.policy_net(state) # q_value比如tensor([[-0.2522, 0.3887]])
# tensor.max(1)返回每行的最大值以及对应的下标,
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
# 所以tensor.max(1)[1]返回最大值对应的下标即action
action = q_value.max(1)[1].view(1, 1) # 注意这里action是个张量如tensor([1])
return action
else:
return torch.tensor([[random.randrange(self.action_dim)]], device=self.device, dtype=torch.long)
def update(self):
if len(self.memory) < self.batch_size:
return
transitions = self.memory.sample(self.batch_size)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = self.memory.Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
batch.state_)), device=self.device, dtype=torch.bool)
non_final_state_s = torch.cat([s for s in batch.state_
if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward) # tensor([1., 1.,...,])
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = self.policy_net(
state_batch).gather(1, action_batch) #tensor([[ 1.1217],...,[ 0.8314]])
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_state_s are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
state__values = torch.zeros(self.batch_size, device=self.device)
state__values[non_final_mask] = self.target_net(
non_final_state_s).max(1)[0].detach()
# Compute the expected Q values
expected_state_action_values = (state__values * self.gamma) + reward_batch # tensor([0.9685, 0.9683,...,])
# Compute Huber loss
self.loss = F.smooth_l1_loss(
state_action_values, expected_state_action_values.unsqueeze(1)) # .unsqueeze增加一个维度
# Optimize the model
self.optimizer.zero_grad() # zero_grad clears old gradients from the last step (otherwise youd just accumulate the gradients from all loss.backward() calls).
self.loss.backward() # loss.backward() computes the derivative of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation.
for param in self.policy_net.parameters(): # clip防止梯度爆炸
param.grad.data.clamp_(-1, 1)
self.optimizer.step() # causes the optimizer to take a step based on the gradients of the parameters.
if __name__ == "__main__":
dqn = DQN()

View File

@@ -1,66 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 10:02:35
@LastEditor: John
@LastEditTime: 2020-06-11 16:57:34
@Discription:
@Environment: python 3.7.7
'''
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
resize = T.Compose([T.ToPILImage(),
T.Resize(40, interpolation=Image.CUBIC),
T.ToTensor()])
def get_cart_location(env,screen_width):
world_width = env.x_threshold * 2
scale = screen_width / world_width
return int(env.state[0] * scale + screen_width / 2.0) # MIDDLE OF CART
def get_screen(env,device):
# Returned screen requested by gym is 400x600x3, but is sometimes larger
# such as 800x1200x3. Transpose it into torch order (CHW).
screen = env.render(mode='rgb_array').transpose((2, 0, 1))
# Cart is in the lower half, so strip off the top and bottom of the screen
_, screen_height, screen_width = screen.shape
screen = screen[:, int(screen_height*0.4):int(screen_height * 0.8)]
view_width = int(screen_width * 0.6)
cart_location = get_cart_location(env,screen_width)
if cart_location < view_width // 2:
slice_range = slice(view_width)
elif cart_location > (screen_width - view_width // 2):
slice_range = slice(-view_width, None)
else:
slice_range = slice(cart_location - view_width // 2,
cart_location + view_width // 2)
# Strip off the edges, so that we have a square image centered on a cart
screen = screen[:, :, slice_range]
# Convert to float, rescale, convert to torch tensor
# (this doesn't require a copy)
screen = np.ascontiguousarray(screen, dtype=np.float32) / 255
screen = torch.from_numpy(screen)
# Resize, and add a batch dimension (BCHW)
return resize(screen).unsqueeze(0).to(device)
if __name__ == "__main__":
import gym
env = gym.make('CartPole-v0').unwrapped
# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
env.reset()
import matplotlib.pyplot as plt
plt.figure()
plt.imshow(get_screen(env,device).cpu().squeeze(0).permute(1, 2, 0).numpy(),
interpolation='none')
plt.title('Example extracted screen')
plt.show()

View File

@@ -1,112 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 10:01:09
@LastEditor: John
LastEditTime: 2021-04-05 11:06:23
@Discription:
@Environment: python 3.7.7
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path=os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import torch
import datetime
from DQN_cnn.env import get_screen
from DQN_cnn.agent import DQNcnn
from common.plot import plot_rewards
from common.utils import save_results
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
if not os.path.exists(curr_path+"/saved_model/"):
os.mkdir(curr_path+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH):
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
if not os.path.exists(curr_path+"/results/"):
os.mkdir(curr_path+"/results/")
if not os.path.exists(RESULT_PATH):
os.mkdir(RESULT_PATH)
class DQNcnnConfig:
def __init__(self) -> None:
self.algo = "DQN_cnn" # name of algo
self.gamma = 0.99
self.epsilon_start = 0.95 # e-greedy策略的初始epsilon
self.epsilon_end = 0.05
self.epsilon_decay = 200
self.lr = 0.01 # leanring rate
self.memory_capacity = 10000 # Replay Memory容量
self.batch_size = 64
self.train_eps = 250 # 训练的episode数目
self.train_steps = 200 # 训练每个episode的最大长度
self.target_update = 4 # target net的更新频率
self.eval_eps = 20 # 测试的episode数目
self.eval_steps = 200 # 测试每个episode的最大长度
self.hidden_dim = 128 # 神经网络隐藏层维度
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # if gpu is to be used
def train(cfg, env, agent):
rewards = []
ma_rewards = []
for i_episode in range(cfg.train_eps):
# Initialize the environment and state
env.reset()
last_screen = get_screen(env, cfg.device)
current_screen = get_screen(env, cfg.device)
state = current_screen - last_screen
ep_reward = 0
for i_step in range(cfg.train_steps+1):
# Select and perform an action
action = agent.choose_action(state)
_, reward, done, _ = env.step(action.item())
ep_reward += reward
reward = torch.tensor([reward], device=cfg.device)
# Observe new state
last_screen = current_screen
current_screen = get_screen(env, cfg.device)
if done:
break
state_ = current_screen - last_screen
# Store the transition in memory
agent.memory.push(state, action, state_, reward)
# Move to the next state
state = state_
# Perform one step of the optimization (on the target network)
agent.update()
# Update the target network, copying all weights and biases in DQN
if i_episode % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print('Episode:{}/{}, Reward:{}, Steps:{}, Explore:{:.2f}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,agent.epsilon,done))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DQNcnnConfig()
# Get screen size so that we can initialize layers correctly based on shape
# returned from AI gym. Typical dimensions at this point are close to 3x40x90
# which is the result of a clamped and down-scaled render buffer in get_screen(env,device)
# 因为这里环境的state需要从默认的向量改为图像所以要unwrapped更改state
env = gym.make('CartPole-v0').unwrapped
env.reset()
init_screen = get_screen(env, cfg.device)
_, _, screen_height, screen_width = init_screen.shape
# Get number of actions from gym action space
action_dim = env.action_space.n
agent = DQNcnn(screen_height, screen_width,
action_dim, cfg)
rewards,ma_rewards = train(cfg,env,agent)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)

View File

@@ -1,35 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 09:42:44
@LastEditor: John
LastEditTime: 2021-03-23 20:38:41
@Discription:
@Environment: python 3.7.7
'''
from collections import namedtuple
import random
class ReplayBuffer(object):
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
self.Transition = namedtuple('Transition',
('state', 'action', 'state_', 'reward'))
def push(self, *args):
"""Saves a transition."""
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = self.Transition(*args)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
return random.sample(self.buffer, batch_size)
def __len__(self):
return len(self.buffer)

View File

@@ -1,41 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 12:18:12
@LastEditor: John
@LastEditTime: 2020-06-11 17:23:45
@Discription:
@Environment: python 3.7.7
'''
import torch.nn as nn
import torch.nn.functional as F
class CNN(nn.Module):
def __init__(self, h, w, n_outputs):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2)
self.bn1 = nn.BatchNorm2d(16)
self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2)
self.bn2 = nn.BatchNorm2d(32)
self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2)
self.bn3 = nn.BatchNorm2d(32)
# Number of Linear input connections depends on output of conv2d layers
# and therefore the input image size, so compute it.
def conv2d_size_out(size, kernel_size = 5, stride = 2):
return (size - (kernel_size - 1) - 1) // stride + 1
convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w)))
convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h)))
linear_input_size = convw * convh * 32
self.head = nn.Linear(linear_input_size, n_outputs)
# Called with either one element to determine next action, or a batch
# during optimization. Returns tensor([[left0exp,right0exp]...]).
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = F.relu(self.bn3(self.conv3(x)))
return self.head(x.view(x.size(0), -1))

View File

@@ -5,7 +5,7 @@
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:50:49
@LastEditor: John
LastEditTime: 2021-03-28 11:07:35
LastEditTime: 2021-05-04 22:28:06
@Discription:
@Environment: python 3.7.7
'''
@@ -35,22 +35,16 @@ class DoubleDQN:
self.batch_size = cfg.batch_size
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
# target_net的初始模型参数完全复制policy_net
self.target_net.load_state_dict(self.policy_net.state_dict())
self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
# target_net copy from policy_net
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
target_param.data.copy_(param.data)
# self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
# 可查parameters()与state_dict()的区别前者require_grad=True
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
self.loss = 0
self.memory = ReplayBuffer(cfg.memory_capacity)
def choose_action(self, state):
'''选择动作
'''
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.actions_count / self.epsilon_decay)
self.actions_count += 1
if random.random() > self.epsilon:
with torch.no_grad():
def predict(self,state):
with torch.no_grad():
# 先转为张量便于丢给神经网络,state元素数据原本为float64
# 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
state = torch.tensor(
@@ -61,6 +55,15 @@ class DoubleDQN:
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
# 所以tensor.max(1)[1]返回最大值对应的下标即action
action = q_value.max(1)[1].item()
return action
def choose_action(self, state):
'''选择动作
'''
self.actions_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.actions_count / self.epsilon_decay)
if random.random() > self.epsilon:
action = self.predict(state)
else:
action = random.randrange(self.action_dim)
return action
@@ -71,7 +74,7 @@ class DoubleDQN:
# 从memory中随机采样transition
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
self.batch_size)
### 转为张量 ###
# convert to tensor
state_batch = torch.tensor(
state_batch, device=self.device, dtype=torch.float)
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(
@@ -82,8 +85,7 @@ class DoubleDQN:
next_state_batch, device=self.device, dtype=torch.float)
done_batch = torch.tensor(np.float32(
done_batch), device=self.device).unsqueeze(1) # 将bool转为float然后转为张量
done_batch), device=self.device) # 将bool转为float然后转为张量
# 计算当前(s_t,a)对应的Q(s_t, a)
q_values = self.policy_net(state_batch)
next_q_values = self.policy_net(next_state_batch)
@@ -102,7 +104,7 @@ class DoubleDQN:
next_state_batch)
# 选出Q(s_t, a)对应的action代入到next_target_values获得target net对应的next_q_value即Q(s_t|a=argmax Q(s_t, a))
next_target_q_value = next_target_values.gather(1, torch.max(next_q_values, 1)[1].unsqueeze(1)).squeeze(1)
q_target = reward_batch + self.gamma * next_target_q_value * (1-done_batch[0])
q_target = reward_batch + self.gamma * next_target_q_value * (1-done_batch)
self.loss = nn.MSELoss()(q_value, q_target.unsqueeze(1)) # 计算 均方误差loss
# 优化模型
self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step
@@ -113,7 +115,9 @@ class DoubleDQN:
self.optimizer.step() # 更新模型
def save(self,path):
torch.save(self.target_net.state_dict(), path+'DoubleDQN_checkpoint.pth')
torch.save(self.target_net.state_dict(), path+'checkpoint.pth')
def load(self,path):
self.target_net.load_state_dict(torch.load(path+'DoubleDQN_checkpoint.pth'))
self.target_net.load_state_dict(torch.load(path+'checkpoint.pth'))
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
param.data.copy_(target_param.data)

View File

@@ -1,93 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
LastEditTime: 2021-03-28 11:05:14
@Discription:
@Environment: python 3.7.7
'''
import sys,os
sys.path.append(os.getcwd()) # add current terminal path
import gym
import torch
import datetime
from DoubleDQN.agent import DoubleDQN
from common.plot import plot_rewards
from common.utils import save_results
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"):
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH):
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"):
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
if not os.path.exists(RESULT_PATH):
os.mkdir(RESULT_PATH)
class DoubleDQNConfig:
def __init__(self):
self.algo = "Double DQN" # name of algo
self.gamma = 0.99
self.epsilon_start = 0.9 # e-greedy策略的初始epsilon
self.epsilon_end = 0.01
self.epsilon_decay = 200
self.lr = 0.01 # 学习率
self.memory_capacity = 10000 # Replay Memory容量
self.batch_size = 128
self.train_eps = 300 # 训练的episode数目
self.train_steps = 200 # 训练每个episode的最大长度
self.target_update = 2 # target net的更新频率
self.eval_eps = 20 # 测试的episode数目
self.eval_steps = 200 # 测试每个episode的最大长度
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
self.hidden_dim = 128 # 神经网络隐藏层维度
def train(cfg,env,agent):
print('Start to train !')
rewards,ma_rewards = [],[]
ep_steps = []
for i_episode in range(cfg.train_eps):
state = env.reset() # reset环境状态
ep_reward = 0
for i_step in range(cfg.train_steps):
action = agent.choose_action(state) # 根据当前环境state选择action
next_state, reward, done, _ = env.step(action) # 更新环境参数
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory
state = next_state # 跳转到下一个状态
agent.update() # 每步更新网络
if done:
break
# 更新target network复制DQN中的所有weights and biases
if i_episode % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step,done))
ep_steps.append(i_step)
rewards.append(ep_reward)
# 计算滑动窗口的reward
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Complete training')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DoubleDQNConfig()
env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym此处一般不需要
env.seed(1) # 设置env随机种子
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = DoubleDQN(state_dim,action_dim,cfg)
rewards,ma_rewards = train(cfg,env,agent)
agent.save(path=SAVED_MODEL_PATH)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

View File

@@ -0,0 +1,194 @@
{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.10"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python3710jvsc74a57bd0366e1054dee9d4501b0eb8f87335afd3c67fc62db6ee611bbc7f8f5a1fefe232",
"display_name": "Python 3.7.10 64-bit ('py37': conda)"
},
"metadata": {
"interpreter": {
"hash": "366e1054dee9d4501b0eb8f87335afd3c67fc62db6ee611bbc7f8f5a1fefe232"
}
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"from pathlib import Path\n",
"curr_path = str(Path().absolute())\n",
"parent_path = str(Path().absolute().parent)\n",
"sys.path.append(parent_path) # add current terminal path to sys.path"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import gym\n",
"import torch\n",
"import datetime\n",
"from DoubleDQN.agent import DoubleDQN\n",
"from common.plot import plot_rewards\n",
"from common.utils import save_results, make_dir\n",
"\n",
"curr_time = datetime.datetime.now().strftime(\n",
" \"%Y%m%d-%H%M%S\") # obtain current time"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class DoubleDQNConfig:\n",
" def __init__(self):\n",
" self.algo = \"DoubleDQN\" # name of algo\n",
" self.env = 'CartPole-v0' # env name\n",
" self.result_path = curr_path+\"/outputs/\" + self.env + \\\n",
" '/'+curr_time+'/results/' # path to save results\n",
" self.model_path = curr_path+\"/outputs/\" + self.env + \\\n",
" '/'+curr_time+'/models/' # path to save models\n",
" self.train_eps = 200 # max tranng episodes\n",
" self.eval_eps = 50 # max evaling episodes\n",
" self.gamma = 0.95\n",
" self.epsilon_start = 1 # start epsilon of e-greedy policy\n",
" self.epsilon_end = 0.01 \n",
" self.epsilon_decay = 500\n",
" self.lr = 0.001 # learning rate\n",
" self.memory_capacity = 100000 # capacity of Replay Memory\n",
" self.batch_size = 64\n",
" self.target_update = 2 # update frequency of target net\n",
" self.device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") # check gpu\n",
" self.hidden_dim = 256 # hidden size of net"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def env_agent_config(cfg,seed=1):\n",
" env = gym.make(cfg.env) \n",
" env.seed(seed)\n",
" state_dim = env.observation_space.shape[0]\n",
" action_dim = env.action_space.n\n",
" agent = DoubleDQN(state_dim,action_dim,cfg)\n",
" return env,agent"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def train(cfg,env,agent):\n",
" print('Start to train !')\n",
" rewards,ma_rewards = [],[]\n",
" for i_ep in range(cfg.train_eps):\n",
" state = env.reset() \n",
" ep_reward = 0\n",
" while True:\n",
" action = agent.choose_action(state) \n",
" next_state, reward, done, _ = env.step(action)\n",
" ep_reward += reward\n",
" agent.memory.push(state, action, reward, next_state, done) \n",
" state = next_state \n",
" agent.update() \n",
" if done:\n",
" break\n",
" if i_ep % cfg.target_update == 0:\n",
" agent.target_net.load_state_dict(agent.policy_net.state_dict())\n",
" if (i_ep+1)%10 == 0:\n",
" print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward}')\n",
" rewards.append(ep_reward)\n",
" if ma_rewards:\n",
" ma_rewards.append(\n",
" 0.9*ma_rewards[-1]+0.1*ep_reward)\n",
" else:\n",
" ma_rewards.append(ep_reward) \n",
" print('Complete training')\n",
" return rewards,ma_rewards"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def eval(cfg,env,agent):\n",
" print('Start to eval !')\n",
" print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')\n",
" rewards = [] \n",
" ma_rewards = []\n",
" for i_ep in range(cfg.eval_eps):\n",
" state = env.reset() \n",
" ep_reward = 0 \n",
" while True:\n",
" action = agent.predict(state) \n",
" next_state, reward, done, _ = env.step(action) \n",
" state = next_state \n",
" ep_reward += reward\n",
" if done:\n",
" break\n",
" rewards.append(ep_reward)\n",
" if ma_rewards:\n",
" ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)\n",
" else:\n",
" ma_rewards.append(ep_reward)\n",
" print(f\"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}\")\n",
" print('Complete evaling')\n",
" return rewards,ma_rewards "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if __name__ == \"__main__\":\n",
" cfg = DoubleDQNConfig()\n",
" # train\n",
" env,agent = env_agent_config(cfg,seed=1)\n",
" rewards, ma_rewards = train(cfg, env, agent)\n",
" make_dir(cfg.result_path, cfg.model_path)\n",
" agent.save(path=cfg.model_path)\n",
" save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)\n",
" plot_rewards(rewards, ma_rewards, tag=\"train\",\n",
" algo=cfg.algo, path=cfg.result_path)\n",
"\n",
" # eval\n",
" env,agent = env_agent_config(cfg,seed=10)\n",
" agent.load(path=cfg.model_path)\n",
" rewards,ma_rewards = eval(cfg,env,agent)\n",
" save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)\n",
" plot_rewards(rewards,ma_rewards,tag=\"eval\",env=cfg.env,algo = cfg.algo,path=cfg.result_path)"
]
}
]
}

View File

@@ -0,0 +1,123 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
LastEditTime: 2021-05-04 22:26:59
@Discription:
@Environment: python 3.7.7
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import gym
import torch
import datetime
from DoubleDQN.agent import DoubleDQN
from common.plot import plot_rewards
from common.utils import save_results, make_dir
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
class DoubleDQNConfig:
def __init__(self):
self.algo = "DoubleDQN" # name of algo
self.env = 'CartPole-v0' # env name
self.result_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/models/' # path to save models
self.train_eps = 200 # max tranng episodes
self.eval_eps = 50 # max evaling episodes
self.gamma = 0.95
self.epsilon_start = 1 # start epsilon of e-greedy policy
self.epsilon_end = 0.01
self.epsilon_decay = 500
self.lr = 0.001 # learning rate
self.memory_capacity = 100000 # capacity of Replay Memory
self.batch_size = 64
self.target_update = 2 # update frequency of target net
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
self.hidden_dim = 256 # hidden size of net
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env)
env.seed(seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = DoubleDQN(state_dim,action_dim,cfg)
return env,agent
def train(cfg,env,agent):
print('Start to train !')
rewards,ma_rewards = [],[]
for i_ep in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.choose_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
state = next_state
agent.update()
if done:
break
if i_ep % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward},Epsilon:{agent.epsilon:.2f}')
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Complete training')
return rewards,ma_rewards
def eval(cfg,env,agent):
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = []
for i_ep in range(cfg.eval_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.predict(state)
next_state, reward, done, _ = env.step(action)
state = next_state
ep_reward += reward
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}")
print('Complete evaling')
return rewards,ma_rewards
if __name__ == "__main__":
cfg = DoubleDQNConfig()
# train
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)
# eval
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)

View File

@@ -1,21 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-10-15 21:28:00
LastEditor: John
LastEditTime: 2020-10-15 21:50:30
Discription:
Environment:
'''
import os
import numpy as np
def save_results(rewards,moving_average_rewards,ep_steps,tag='train',result_path='./results'):
if not os.path.exists(result_path): # 检测是否存在文件夹
os.mkdir(result_path)
np.save(result_path+'rewards_'+tag+'.npy', rewards)
np.save(result_path+'moving_average_rewards_'+tag+'.npy', moving_average_rewards)
np.save(result_path+'steps_'+tag+'.npy',ep_steps )

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-24 22:18:18
LastEditor: John
LastEditTime: 2021-03-31 14:51:09
LastEditTime: 2021-05-04 22:39:34
Discription:
Environment:
'''
@@ -65,11 +65,11 @@ class HierarchicalDQN:
if self.batch_size > len(self.memory):
return
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size)
state_batch = torch.tensor(state_batch,dtype=torch.float)
action_batch = torch.tensor(action_batch,dtype=torch.int64).unsqueeze(1)
reward_batch = torch.tensor(reward_batch,dtype=torch.float)
next_state_batch = torch.tensor(next_state_batch, dtype=torch.float)
done_batch = torch.tensor(np.float32(done_batch))
state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float)
action_batch = torch.tensor(action_batch,device=self.device,dtype=torch.int64).unsqueeze(1)
reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float)
next_state_batch = torch.tensor(next_state_batch,device=self.device, dtype=torch.float)
done_batch = torch.tensor(np.float32(done_batch),device=self.device)
q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1)
next_state_values = self.policy_net(next_state_batch).max(1)[0].detach()
expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch)
@@ -79,17 +79,17 @@ class HierarchicalDQN:
for param in self.policy_net.parameters(): # clip防止梯度爆炸
param.grad.data.clamp_(-1, 1)
self.optimizer.step()
self.loss_numpy = loss.detach().numpy()
self.loss_numpy = loss.detach().cpu().numpy()
self.losses.append(self.loss_numpy)
def update_meta(self):
if self.batch_size > len(self.meta_memory):
return
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.meta_memory.sample(self.batch_size)
state_batch = torch.tensor(state_batch,dtype=torch.float)
action_batch = torch.tensor(action_batch,dtype=torch.int64).unsqueeze(1)
reward_batch = torch.tensor(reward_batch,dtype=torch.float)
next_state_batch = torch.tensor(next_state_batch, dtype=torch.float)
done_batch = torch.tensor(np.float32(done_batch))
state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float)
action_batch = torch.tensor(action_batch,device=self.device,dtype=torch.int64).unsqueeze(1)
reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float)
next_state_batch = torch.tensor(next_state_batch,device=self.device, dtype=torch.float)
done_batch = torch.tensor(np.float32(done_batch),device=self.device)
q_values = self.meta_policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1)
next_state_values = self.meta_policy_net(next_state_batch).max(1)[0].detach()
expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch)
@@ -99,7 +99,7 @@ class HierarchicalDQN:
for param in self.meta_policy_net.parameters(): # clip防止梯度爆炸
param.grad.data.clamp_(-1, 1)
self.meta_optimizer.step()
self.meta_loss_numpy = meta_loss.detach().numpy()
self.meta_loss_numpy = meta_loss.detach().cpu().numpy()
self.meta_losses.append(self.meta_loss_numpy)
def save(self, path):

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-29 10:37:32
LastEditor: John
LastEditTime: 2021-03-31 14:58:49
LastEditTime: 2021-05-04 22:35:56
Discription:
Environment:
'''
@@ -21,27 +21,23 @@ import numpy as np
import torch
import gym
from common.utils import save_results
from common.plot import plot_rewards,plot_losses
from common.utils import save_results,make_dir
from common.plot import plot_rewards
from HierarchicalDQN.agent import HierarchicalDQN
SEQUENCE = datetime.datetime.now().strftime(
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
if not os.path.exists(curr_path+"/saved_model/"):
os.mkdir(curr_path+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH):
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
if not os.path.exists(curr_path+"/results/"):
os.mkdir(curr_path+"/results/")
if not os.path.exists(RESULT_PATH):
os.mkdir(RESULT_PATH)
class HierarchicalDQNConfig:
def __init__(self):
self.algo = "H-DQN" # name of algo
self.env = 'CartPole-v0'
self.result_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/models/' # path to save models
self.train_eps = 300 # 训练的episode数目
self.eval_eps = 50 # 测试的episode数目
self.gamma = 0.99
self.epsilon_start = 1 # start epsilon of e-greedy policy
self.epsilon_end = 0.01
@@ -49,19 +45,25 @@ class HierarchicalDQNConfig:
self.lr = 0.0001 # learning rate
self.memory_capacity = 10000 # Replay Memory capacity
self.batch_size = 32
self.train_eps = 300 # 训练的episode数目
self.target_update = 2 # target net的更新频率
self.eval_eps = 20 # 测试的episode数目
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
self.hidden_dim = 256 # dimension of hidden layer
def env_agent_config(cfg,seed=1):
env = gym.make(cfg.env)
env.seed(seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = HierarchicalDQN(state_dim,action_dim,cfg)
return env,agent
def train(cfg, env, agent):
print('Start to train !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moveing average reward
for i_episode in range(cfg.train_eps):
for i_ep in range(cfg.train_eps):
state = env.reset()
done = False
ep_reward = 0
@@ -83,7 +85,7 @@ def train(cfg, env, agent):
state = next_state
agent.update()
agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done)
print('Episode:{}/{}, Reward:{}, Loss:{:.2f}, Meta_Loss:{:.2f}'.format(i_episode+1, cfg.train_eps, ep_reward,agent.loss_numpy ,agent.meta_loss_numpy ))
print('Episode:{}/{}, Reward:{}, Loss:{:.2f}, Meta_Loss:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward,agent.loss_numpy ,agent.meta_loss_numpy ))
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
@@ -93,18 +95,52 @@ def train(cfg, env, agent):
print('Complete training')
return rewards, ma_rewards
def eval(cfg, env, agent):
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moveing average reward
for i_ep in range(cfg.train_eps):
state = env.reset()
done = False
ep_reward = 0
while not done:
goal = agent.set_goal(state)
onehot_goal = agent.to_onehot(goal)
extrinsic_reward = 0
while not done and goal != np.argmax(state):
goal_state = np.concatenate([state, onehot_goal])
action = agent.choose_action(goal_state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
extrinsic_reward += reward
state = next_state
agent.update()
print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward}, Loss:{agent.loss_numpy:.2f}, Meta_Loss:{agent.meta_loss_numpy:.2f}')
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(
0.9*ma_rewards[-1]+0.1*ep_reward)
else:
ma_rewards.append(ep_reward)
print('Complete training')
return rewards, ma_rewards
if __name__ == "__main__":
env = gym.make('CartPole-v0')
env.seed(1)
cfg = HierarchicalDQNConfig()
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
agent = HierarchicalDQN(state_dim, action_dim, cfg)
rewards, ma_rewards = train(cfg, env, agent)
agent.save(path=SAVED_MODEL_PATH)
save_results(rewards, ma_rewards, tag='train', path=RESULT_PATH)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=RESULT_PATH)
plot_losses(agent.losses,algo=cfg.algo, path=RESULT_PATH)
# train
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)
# eval
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)

View File

@@ -5,13 +5,14 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-12 16:14:34
LastEditor: John
LastEditTime: 2021-03-17 12:35:06
LastEditTime: 2021-05-05 16:58:39
Discription:
Environment:
'''
import numpy as np
from collections import defaultdict
import torch
import dill
class FisrtVisitMC:
''' On-Policy First-Visit MC Control
@@ -20,14 +21,14 @@ class FisrtVisitMC:
self.action_dim = action_dim
self.epsilon = cfg.epsilon
self.gamma = cfg.gamma
self.Q = defaultdict(lambda: np.zeros(action_dim))
self.Q_table = defaultdict(lambda: np.zeros(action_dim))
self.returns_sum = defaultdict(float) # sum of returns
self.returns_count = defaultdict(float)
def choose_action(self,state):
''' e-greed policy '''
if state in self.Q.keys():
best_action = np.argmax(self.Q[state])
if state in self.Q_table.keys():
best_action = np.argmax(self.Q_table[state])
action_probs = np.ones(self.action_dim, dtype=float) * self.epsilon / self.action_dim
action_probs[best_action] += (1.0 - self.epsilon)
action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
@@ -48,19 +49,17 @@ class FisrtVisitMC:
# Calculate average return for this state over all sampled episodes
self.returns_sum[sa_pair] += G
self.returns_count[sa_pair] += 1.0
self.Q[state][action] = self.returns_sum[sa_pair] / self.returns_count[sa_pair]
self.Q_table[state][action] = self.returns_sum[sa_pair] / self.returns_count[sa_pair]
def save(self,path):
'''把 Q表格 的数据保存到文件中
'''
import dill
torch.save(
obj=self.Q,
f=path,
obj=self.Q_table,
f=path+"Q_table",
pickle_module=dill
)
def load(self, path):
'''从文件中读取数据到 Q表格
'''
import dill
self.Q =torch.load(f=path,pickle_module=dill)
self.Q_table =torch.load(f=path+"Q_table",pickle_module=dill)

View File

@@ -1,88 +0,0 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-11 14:26:44
LastEditor: John
LastEditTime: 2021-03-17 12:35:36
Discription:
Environment:
'''
import sys,os
sys.path.append(os.getcwd())
import argparse
import datetime
from envs.racetrack_env import RacetrackEnv
from MonteCarlo.agent import FisrtVisitMC
from common.plot import plot_rewards
from common.utils import save_results
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
os.mkdir(SAVED_MODEL_PATH)
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
os.mkdir(RESULT_PATH)
class MCConfig:
def __init__(self):
self.epsilon = 0.15 # epsilon: The probability to select a random action .
self.gamma = 0.9 # gamma: Gamma discount factor.
self.n_episodes = 150
self.n_steps = 2000
def get_mc_args():
'''set parameters
'''
parser = argparse.ArgumentParser()
parser.add_argument("--epsilon", default=0.15, type=float) # epsilon: The probability to select a random action . float between 0 and 1.
parser.add_argument("--gamma", default=0.9, type=float) # gamma: Gamma discount factor.
parser.add_argument("--n_episodes", default=150, type=int)
parser.add_argument("--n_steps", default=2000, type=int)
mc_cfg = parser.parse_args()
return mc_cfg
def mc_train(cfg,env,agent):
rewards = []
ma_rewards = [] # moving average rewards
for i_episode in range(cfg.n_episodes):
one_ep_transition = []
state = env.reset()
ep_reward = 0
while True:
# for t in range(cfg.n_steps):
action = agent.choose_action(state)
next_state, reward, done = env.step(action)
ep_reward+=reward
one_ep_transition.append((state, action, reward))
state = next_state
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
agent.update(one_ep_transition)
if (i_episode+1)%10==0:
print("Episode:{}/{}: Reward:{}".format(i_episode+1, mc_cfg.n_episodes,ep_reward))
return rewards,ma_rewards
if __name__ == "__main__":
mc_cfg = MCConfig()
env = RacetrackEnv()
action_dim=9
agent = FisrtVisitMC(action_dim,mc_cfg)
rewards,ma_rewards= mc_train(mc_cfg,env,agent)
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
plot_rewards(rewards,ma_rewards,tag="train",algo = "On-Policy First-Visit MC Control",path=RESULT_PATH)

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

View File

@@ -0,0 +1,118 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-11 14:26:44
LastEditor: John
LastEditTime: 2021-05-05 17:27:50
Discription:
Environment:
'''
import sys,os
curr_path = os.path.dirname(__file__)
parent_path = os.path.dirname(curr_path)
sys.path.append(parent_path) # add current terminal path to sys.path
import torch
import datetime
from common.utils import save_results,make_dir
from common.plot import plot_rewards
from MonteCarlo.agent import FisrtVisitMC
from envs.racetrack_env import RacetrackEnv
curr_time = datetime.datetime.now().strftime(
"%Y%m%d-%H%M%S") # obtain current time
class MCConfig:
def __init__(self):
self.algo = "MC" # name of algo
self.env = 'Racetrack'
self.result_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/results/' # path to save results
self.model_path = curr_path+"/outputs/" + self.env + \
'/'+curr_time+'/models/' # path to save models
# epsilon: The probability to select a random action .
self.epsilon = 0.15
self.gamma = 0.9 # gamma: Gamma discount factor.
self.train_eps = 200
self.device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu") # check gpu
def env_agent_config(cfg,seed=1):
env = RacetrackEnv()
action_dim = 9
agent = FisrtVisitMC(action_dim, cfg)
return env,agent
def train(cfg, env, agent):
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moving average rewards
for i_ep in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
one_ep_transition = []
while True:
action = agent.choose_action(state)
next_state, reward, done = env.step(action)
ep_reward += reward
one_ep_transition.append((state, action, reward))
state = next_state
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
agent.update(one_ep_transition)
if (i_ep+1) % 10 == 0:
print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}")
print('Complete training')
return rewards, ma_rewards
def eval(cfg, env, agent):
print('Start to eval !')
print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}')
rewards = []
ma_rewards = [] # moving average rewards
for i_ep in range(cfg.train_eps):
state = env.reset()
ep_reward = 0
while True:
action = agent.choose_action(state)
next_state, reward, done = env.step(action)
ep_reward += reward
state = next_state
if done:
break
rewards.append(ep_reward)
if ma_rewards:
ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1)
else:
ma_rewards.append(ep_reward)
if (i_ep+1) % 10 == 0:
print(f"Episode:{i_ep+1}/{cfg.train_eps}: Reward:{ep_reward}")
return rewards, ma_rewards
if __name__ == "__main__":
cfg = MCConfig()
# train
env,agent = env_agent_config(cfg,seed=1)
rewards, ma_rewards = train(cfg, env, agent)
make_dir(cfg.result_path, cfg.model_path)
agent.save(path=cfg.model_path)
save_results(rewards, ma_rewards, tag='train', path=cfg.result_path)
plot_rewards(rewards, ma_rewards, tag="train",
algo=cfg.algo, path=cfg.result_path)
# eval
env,agent = env_agent_config(cfg,seed=10)
agent.load(path=cfg.model_path)
rewards,ma_rewards = eval(cfg,env,agent)
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Some files were not shown because too many files have changed in this diff Show More