Files
easy-rl/codes/DoubleDQN/agent.py
johnjim0816 659065e9db update
2021-05-07 16:31:25 +08:00

124 lines
5.7 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:50:49
@LastEditor: John
LastEditTime: 2021-05-04 22:28:06
@Discription:
@Environment: python 3.7.7
'''
'''off-policy
'''
import torch
import torch.nn as nn
import torch.optim as optim
import random
import math
import numpy as np
from common.memory import ReplayBuffer
from common.model import MLP
class DoubleDQN:
def __init__(self, state_dim, action_dim, cfg):
self.action_dim = action_dim # 总的动作个数
self.device = cfg.device # 设备cpu或gpu等
self.gamma = cfg.gamma
# e-greedy策略相关参数
self.actions_count = 0
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.batch_size = cfg.batch_size
self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device)
# target_net copy from policy_net
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
target_param.data.copy_(param.data)
# self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
# 可查parameters()与state_dict()的区别前者require_grad=True
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr)
self.loss = 0
self.memory = ReplayBuffer(cfg.memory_capacity)
def predict(self,state):
with torch.no_grad():
# 先转为张量便于丢给神经网络,state元素数据原本为float64
# 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
state = torch.tensor(
[state], device=self.device, dtype=torch.float32)
# 如tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
q_value = self.policy_net(state)
# tensor.max(1)返回每行的最大值以及对应的下标,
# 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0]))
# 所以tensor.max(1)[1]返回最大值对应的下标即action
action = q_value.max(1)[1].item()
return action
def choose_action(self, state):
'''选择动作
'''
self.actions_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.actions_count / self.epsilon_decay)
if random.random() > self.epsilon:
action = self.predict(state)
else:
action = random.randrange(self.action_dim)
return action
def update(self):
if len(self.memory) < self.batch_size:
return
# 从memory中随机采样transition
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(
self.batch_size)
# convert to tensor
state_batch = torch.tensor(
state_batch, device=self.device, dtype=torch.float)
action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(
1) # 例如tensor([[1],...,[0]])
reward_batch = torch.tensor(
reward_batch, device=self.device, dtype=torch.float) # tensor([1., 1.,...,1])
next_state_batch = torch.tensor(
next_state_batch, device=self.device, dtype=torch.float)
done_batch = torch.tensor(np.float32(
done_batch), device=self.device) # 将bool转为float然后转为张量
# 计算当前(s_t,a)对应的Q(s_t, a)
q_values = self.policy_net(state_batch)
next_q_values = self.policy_net(next_state_batch)
# 代入当前选择的action得到Q(s_t|a=a_t)
q_value = q_values.gather(dim=1, index=action_batch)
'''以下是Nature DQN的q_target计算方式
# 计算所有next states的Q'(s_{t+1})的最大值Q'为目标网络的q函数
next_q_state_value = self.target_net(
next_state_batch).max(1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,])
# 计算 q_target
# 对于终止状态此时done_batch[0]=1, 对应的expected_q_value等于reward
q_target = reward_batch + self.gamma * next_q_state_value * (1-done_batch[0])
'''
'''以下是Double DQN q_target计算方式与NatureDQN稍有不同'''
next_target_values = self.target_net(
next_state_batch)
# 选出Q(s_t, a)对应的action代入到next_target_values获得target net对应的next_q_value即Q(s_t|a=argmax Q(s_t, a))
next_target_q_value = next_target_values.gather(1, torch.max(next_q_values, 1)[1].unsqueeze(1)).squeeze(1)
q_target = reward_batch + self.gamma * next_target_q_value * (1-done_batch)
self.loss = nn.MSELoss()(q_value, q_target.unsqueeze(1)) # 计算 均方误差loss
# 优化模型
self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step
# loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分
self.loss.backward()
for param in self.policy_net.parameters(): # clip防止梯度爆炸
param.grad.data.clamp_(-1, 1)
self.optimizer.step() # 更新模型
def save(self,path):
torch.save(self.target_net.state_dict(), path+'checkpoint.pth')
def load(self,path):
self.target_net.load_state_dict(torch.load(path+'checkpoint.pth'))
for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()):
param.data.copy_(target_param.data)