add Qlearning

This commit is contained in:
JohnJim0816
2021-03-11 19:26:32 +08:00
parent afd4f8c20d
commit 47390be0cf
11 changed files with 254 additions and 0 deletions

115
codes/QLearning/main.py Normal file
View File

@@ -0,0 +1,115 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-03-11 19:22:50
Discription:
Environment:
'''
import sys,os
sys.path.append(os.getcwd()) # 添加当前终端路径
import argparse
import gym
import datetime
from QLearning.plot import plot
from QLearning.utils import save_results
from envs.gridworld_env import CliffWalkingWapper, FrozenLakeWapper
from QLearning.agent import QLearning
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
def get_args():
'''训练的模型参数
'''
parser = argparse.ArgumentParser()
'''训练相关参数'''
parser.add_argument("--n_episodes", default=500,
type=int, help="训练的最大episode数目")
'''算法相关参数'''
parser.add_argument("--gamma", default=0.9,
type=float, help="reward的衰减率")
parser.add_argument("--epsilon_start", default=0.99,
type=float, help="e-greedy策略中初始epsilon")
parser.add_argument("--epsilon_end", default=0.01,
type=float, help="e-greedy策略中的结束epsilon")
parser.add_argument("--epsilon_decay", default=200,
type=float, help="e-greedy策略中epsilon的衰减率")
parser.add_argument("--lr", default=0.1, type=float, help="学习率")
config = parser.parse_args()
return config
def train(cfg,env,agent):
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
# env = FrozenLakeWapper(env)
rewards = [] # 记录所有episode的reward,
steps = [] # 记录所有episode的steps
for i_episode in range(cfg.n_episodes):
ep_reward = 0 # 记录每个episode的reward
ep_steps = 0 # 记录每个episode走了多少step
obs = env.reset() # 重置环境, 重新开一局即开始新的一个episode
while True:
action = agent.choose_action(obs) # 根据算法选择一个动作
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
# 训练 Q-learning算法
agent.update(obs, action, reward, next_obs, done) # 不需要下一步的action
obs = next_obs # 存储上一个观察值
ep_reward += reward
ep_steps += 1 # 计算step数
if done:
break
steps.append(ep_steps)
# 计算滑动平均的reward
if rewards:
rewards.append(rewards[-1]*0.9+ep_reward*0.1)
else:
rewards.append(ep_reward)
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
plot(rewards)
if not os.path.exists(SAVED_MODEL_PATH):
os.mkdir(SAVED_MODEL_PATH)
agent.save(SAVED_MODEL_PATH+'Q_table.pkl') # 训练结束,保存模型
'''存储reward等相关结果'''
save_results(rewards,tag='train',result_path=RESULT_PATH)
def eval(cfg,env,agent):
# env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
# env = FrozenLakeWapper(env)
rewards = [] # 记录所有episode的reward,
steps = [] # 记录所有episode的steps
for i_episode in range(20):
ep_reward = 0 # 记录每个episode的reward
ep_steps = 0 # 记录每个episode走了多少step
obs = env.reset() # 重置环境, 重新开一局即开始新的一个episode
while True:
action = agent.choose_action(obs) # 根据算法选择一个动作
next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
obs = next_obs # 存储上一个观察值
ep_reward += reward
ep_steps += 1 # 计算step数
if done:
break
steps.append(ep_steps)
# 计算滑动平均的reward
if rewards:
rewards.append(rewards[-1]*0.9+ep_reward*0.1)
else:
rewards.append(ep_reward)
print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
plot(rewards)
'''存储reward等相关结果'''
save_results(rewards,tag='eval',result_path=RESULT_PATH)
if __name__ == "__main__":
cfg = get_args()
env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
env = CliffWalkingWapper(env)
n_actions = env.action_space.n
agent = QLearning(n_actions,cfg)
train(cfg,env,agent)
eval(cfg,env,agent)