diff --git a/codes/QLearning/README.md b/codes/QLearning/README.md
new file mode 100644
index 0000000..0f6a87c
--- /dev/null
+++ b/codes/QLearning/README.md
@@ -0,0 +1,19 @@
+## CliffWalking-v0环境简介
+
+悬崖寻路问题(CliffWalking)是指在一个4 x 12的网格中,智能体以网格的左下角位置为起点,以网格的下角位置为终点,目标是移动智能体到达终点位置,智能体每次可以在上、下、左、右这4个方向中移动一步,每移动一步会得到-1单位的奖励。
+
+
+
+如图,红色部分表示悬崖,数字代表智能体能够观测到的位置信息,即observation,总共会有0-47等48个不同的值,智能体再移动中会有以下限制:
+
+* 智能体不能移出网格,如果智能体想执行某个动作移出网格,那么这一步智能体不会移动,但是这个操作依然会得到-1单位的奖励
+
+* 如果智能体“掉入悬崖” ,会立即回到起点位置,并得到-100单位的奖励
+
+* 当智能体移动到终点时,该回合结束,该回合总奖励为各步奖励之和
+
+实际的仿真界面如下:
+
+
+
+由于从起点到终点最少需要13步,每步得到-1的reward,因此最佳训练算法下,每个episode下reward总和应该为-13。
\ No newline at end of file
diff --git a/codes/QLearning/agent.py b/codes/QLearning/agent.py
new file mode 100644
index 0000000..3e9fb2d
--- /dev/null
+++ b/codes/QLearning/agent.py
@@ -0,0 +1,63 @@
+#!/usr/bin/env python
+# coding=utf-8
+'''
+Author: John
+Email: johnjim0816@gmail.com
+Date: 2020-09-11 23:03:00
+LastEditor: John
+LastEditTime: 2021-03-11 19:16:27
+Discription:
+Environment:
+'''
+from functools import update_wrapper
+import numpy as np
+import math
+import torch
+from collections import defaultdict
+
+class QLearning(object):
+ def __init__(self,
+ n_actions,cfg):
+ self.n_actions = n_actions # number of actions
+ self.lr = cfg.lr # learning rate
+ self.gamma = cfg.gamma
+ self.epsilon = 0
+ self.sample_count = 0 # epsilon随训练的也就是采样次数逐渐衰减,所以需要计数
+ self.epsilon_start = cfg.epsilon_start
+ self.epsilon_end = cfg.epsilon_end
+ self.epsilon_decay = cfg.epsilon_decay
+ self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 使用字典存储Q表,个人比较喜欢这种,也可以用下面一行的二维数组表示,但是需要额外更改代码
+ # self.Q_table = np.zeros((n_states, n_actions)) # Q表
+ def choose_action(self, state):
+ self.sample_count += 1
+ self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
+ math.exp(-1. * self.sample_count / self.epsilon_decay)
+ # 随机选取0-1之间的值,如果大于epsilon就按照贪心策略选取action,否则随机选取
+ if np.random.uniform(0, 1) > self.epsilon:
+ action = np.argmax(self.Q_table[state])
+ else:
+ action = np.random.choice(self.n_actions) # 有一定概率随机探索选取一个动作
+ return action
+
+ def update(self, state, action, reward, next_state, done):
+ Q_predict = self.Q_table[state][action]
+ if done:
+ Q_target = reward # terminal state
+ else:
+ Q_target = reward + self.gamma * np.max(
+ self.Q_table[next_state]) # Q_table-learning
+ self.Q_table[state][action] += self.lr * (Q_target - Q_predict)
+ def save(self,path):
+ '''把 Q表格 的数据保存到文件中
+ '''
+ import dill
+ torch.save(
+ obj=self.Q_table,
+ f=path,
+ pickle_module=dill
+ )
+
+ def load(self, path):
+ '''从文件中读取数据到 Q表格
+ '''
+ self.Q_table =torch.load(f='prod_dls.pkl',pickle_module=dill)
\ No newline at end of file
diff --git a/codes/QLearning/assets/image-20201007211441036.png b/codes/QLearning/assets/image-20201007211441036.png
new file mode 100644
index 0000000..ae5b0f8
Binary files /dev/null and b/codes/QLearning/assets/image-20201007211441036.png differ
diff --git a/codes/QLearning/assets/image-20201007211858925.png b/codes/QLearning/assets/image-20201007211858925.png
new file mode 100644
index 0000000..0bbb5b2
Binary files /dev/null and b/codes/QLearning/assets/image-20201007211858925.png differ
diff --git a/codes/QLearning/main.py b/codes/QLearning/main.py
new file mode 100644
index 0000000..aa1e3b2
--- /dev/null
+++ b/codes/QLearning/main.py
@@ -0,0 +1,115 @@
+#!/usr/bin/env python
+# coding=utf-8
+'''
+Author: John
+Email: johnjim0816@gmail.com
+Date: 2020-09-11 23:03:00
+LastEditor: John
+LastEditTime: 2021-03-11 19:22:50
+Discription:
+Environment:
+'''
+
+import sys,os
+sys.path.append(os.getcwd()) # 添加当前终端路径
+import argparse
+import gym
+import datetime
+from QLearning.plot import plot
+from QLearning.utils import save_results
+from envs.gridworld_env import CliffWalkingWapper, FrozenLakeWapper
+from QLearning.agent import QLearning
+
+SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
+SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/'
+RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/result/"+SEQUENCE+'/'
+
+def get_args():
+ '''训练的模型参数
+ '''
+ parser = argparse.ArgumentParser()
+ '''训练相关参数'''
+ parser.add_argument("--n_episodes", default=500,
+ type=int, help="训练的最大episode数目")
+ '''算法相关参数'''
+ parser.add_argument("--gamma", default=0.9,
+ type=float, help="reward的衰减率")
+ parser.add_argument("--epsilon_start", default=0.99,
+ type=float, help="e-greedy策略中初始epsilon")
+ parser.add_argument("--epsilon_end", default=0.01,
+ type=float, help="e-greedy策略中的结束epsilon")
+ parser.add_argument("--epsilon_decay", default=200,
+ type=float, help="e-greedy策略中epsilon的衰减率")
+ parser.add_argument("--lr", default=0.1, type=float, help="学习率")
+ config = parser.parse_args()
+ return config
+def train(cfg,env,agent):
+ # env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
+ # env = FrozenLakeWapper(env)
+ rewards = [] # 记录所有episode的reward,
+ steps = [] # 记录所有episode的steps
+ for i_episode in range(cfg.n_episodes):
+ ep_reward = 0 # 记录每个episode的reward
+ ep_steps = 0 # 记录每个episode走了多少step
+ obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
+ while True:
+ action = agent.choose_action(obs) # 根据算法选择一个动作
+ next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
+ # 训练 Q-learning算法
+ agent.update(obs, action, reward, next_obs, done) # 不需要下一步的action
+ obs = next_obs # 存储上一个观察值
+ ep_reward += reward
+ ep_steps += 1 # 计算step数
+ if done:
+ break
+ steps.append(ep_steps)
+ # 计算滑动平均的reward
+ if rewards:
+ rewards.append(rewards[-1]*0.9+ep_reward*0.1)
+ else:
+ rewards.append(ep_reward)
+ print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
+ plot(rewards)
+ if not os.path.exists(SAVED_MODEL_PATH):
+ os.mkdir(SAVED_MODEL_PATH)
+ agent.save(SAVED_MODEL_PATH+'Q_table.pkl') # 训练结束,保存模型
+ '''存储reward等相关结果'''
+ save_results(rewards,tag='train',result_path=RESULT_PATH)
+
+def eval(cfg,env,agent):
+ # env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up
+ # env = FrozenLakeWapper(env)
+ rewards = [] # 记录所有episode的reward,
+ steps = [] # 记录所有episode的steps
+ for i_episode in range(20):
+ ep_reward = 0 # 记录每个episode的reward
+ ep_steps = 0 # 记录每个episode走了多少step
+ obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode)
+ while True:
+ action = agent.choose_action(obs) # 根据算法选择一个动作
+ next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互
+ obs = next_obs # 存储上一个观察值
+ ep_reward += reward
+ ep_steps += 1 # 计算step数
+ if done:
+ break
+ steps.append(ep_steps)
+ # 计算滑动平均的reward
+ if rewards:
+ rewards.append(rewards[-1]*0.9+ep_reward*0.1)
+ else:
+ rewards.append(ep_reward)
+ print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.n_episodes,ep_reward))
+ plot(rewards)
+ '''存储reward等相关结果'''
+ save_results(rewards,tag='eval',result_path=RESULT_PATH)
+
+if __name__ == "__main__":
+ cfg = get_args()
+ env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left
+ env = CliffWalkingWapper(env)
+ n_actions = env.action_space.n
+ agent = QLearning(n_actions,cfg)
+ train(cfg,env,agent)
+ eval(cfg,env,agent)
+
diff --git a/codes/QLearning/plot.py b/codes/QLearning/plot.py
new file mode 100644
index 0000000..e64ceba
--- /dev/null
+++ b/codes/QLearning/plot.py
@@ -0,0 +1,35 @@
+#!/usr/bin/env python
+# coding=utf-8
+'''
+Author: John
+Email: johnjim0816@gmail.com
+Date: 2020-10-07 20:57:11
+LastEditor: John
+LastEditTime: 2020-10-07 21:00:29
+Discription:
+Environment:
+'''
+import matplotlib.pyplot as plt
+import seaborn as sns
+import numpy as np
+import os
+
+def plot(item,ylabel='rewards'):
+ sns.set()
+ plt.figure()
+ plt.plot(np.arange(len(item)), item)
+ plt.title(ylabel+' of Q-learning')
+ plt.ylabel(ylabel)
+ plt.xlabel('episodes')
+ plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
+ plt.show()
+
+if __name__ == "__main__":
+
+ output_path = os.path.dirname(__file__)+"/result/"
+ rewards=np.load(output_path+"rewards_train.npy", )
+ MA_rewards=np.load(output_path+"MA_rewards_train.npy")
+ steps = np.load(output_path+"steps_train.npy")
+ plot(rewards)
+ plot(MA_rewards,ylabel='moving_average_rewards')
+ plot(steps,ylabel='steps')
\ No newline at end of file
diff --git a/codes/QLearning/result/20210311-192256/rewards_eval.npy b/codes/QLearning/result/20210311-192256/rewards_eval.npy
new file mode 100644
index 0000000..9bee5e4
Binary files /dev/null and b/codes/QLearning/result/20210311-192256/rewards_eval.npy differ
diff --git a/codes/QLearning/result/20210311-192256/rewards_train.npy b/codes/QLearning/result/20210311-192256/rewards_train.npy
new file mode 100644
index 0000000..9395542
Binary files /dev/null and b/codes/QLearning/result/20210311-192256/rewards_train.npy differ
diff --git a/codes/QLearning/result/rewards.png b/codes/QLearning/result/rewards.png
new file mode 100644
index 0000000..4acca82
Binary files /dev/null and b/codes/QLearning/result/rewards.png differ
diff --git a/codes/QLearning/saved_model/20210311-192256/Q_table.pkl b/codes/QLearning/saved_model/20210311-192256/Q_table.pkl
new file mode 100644
index 0000000..159318d
Binary files /dev/null and b/codes/QLearning/saved_model/20210311-192256/Q_table.pkl differ
diff --git a/codes/QLearning/utils.py b/codes/QLearning/utils.py
new file mode 100644
index 0000000..d777986
--- /dev/null
+++ b/codes/QLearning/utils.py
@@ -0,0 +1,22 @@
+#!/usr/bin/env python
+# coding=utf-8
+'''
+Author: John
+Email: johnjim0816@gmail.com
+Date: 2020-11-23 13:44:52
+LastEditor: John
+LastEditTime: 2021-03-11 19:18:34
+Discription:
+Environment:
+'''
+import os
+import numpy as np
+
+
+def save_results(rewards,tag='train',result_path='./result'):
+ '''保存reward等结果
+ '''
+ if not os.path.exists(result_path): # 检测是否存在文件夹
+ os.mkdir(result_path)
+ np.save(result_path+'rewards_'+tag+'.npy', rewards)
+ print('results saved!')