add Qlearning

This commit is contained in:
JohnJim0816
2021-03-11 19:26:32 +08:00
parent afd4f8c20d
commit 47390be0cf
11 changed files with 254 additions and 0 deletions

63
codes/QLearning/agent.py Normal file
View File

@@ -0,0 +1,63 @@
#!/usr/bin/env python
# coding=utf-8
'''
Author: John
Email: johnjim0816@gmail.com
Date: 2020-09-11 23:03:00
LastEditor: John
LastEditTime: 2021-03-11 19:16:27
Discription:
Environment:
'''
from functools import update_wrapper
import numpy as np
import math
import torch
from collections import defaultdict
class QLearning(object):
def __init__(self,
n_actions,cfg):
self.n_actions = n_actions # number of actions
self.lr = cfg.lr # learning rate
self.gamma = cfg.gamma
self.epsilon = 0
self.sample_count = 0 # epsilon随训练的也就是采样次数逐渐衰减所以需要计数
self.epsilon_start = cfg.epsilon_start
self.epsilon_end = cfg.epsilon_end
self.epsilon_decay = cfg.epsilon_decay
self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 使用字典存储Q表个人比较喜欢这种也可以用下面一行的二维数组表示但是需要额外更改代码
# self.Q_table = np.zeros((n_states, n_actions)) # Q表
def choose_action(self, state):
self.sample_count += 1
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.sample_count / self.epsilon_decay)
# 随机选取0-1之间的值如果大于epsilon就按照贪心策略选取action否则随机选取
if np.random.uniform(0, 1) > self.epsilon:
action = np.argmax(self.Q_table[state])
else:
action = np.random.choice(self.n_actions) # 有一定概率随机探索选取一个动作
return action
def update(self, state, action, reward, next_state, done):
Q_predict = self.Q_table[state][action]
if done:
Q_target = reward # terminal state
else:
Q_target = reward + self.gamma * np.max(
self.Q_table[next_state]) # Q_table-learning
self.Q_table[state][action] += self.lr * (Q_target - Q_predict)
def save(self,path):
'''把 Q表格 的数据保存到文件中
'''
import dill
torch.save(
obj=self.Q_table,
f=path,
pickle_module=dill
)
def load(self, path):
'''从文件中读取数据到 Q表格
'''
self.Q_table =torch.load(f='prod_dls.pkl',pickle_module=dill)