Files
happy-llm/docs/chapter2/2.3 搭建一个Transformer.md
logan_zou dbced843e5 init
2024-05-28 12:25:44 +08:00

275 lines
16 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# 2.3 搭建一个 Transformer
在前两章,我们分别深入剖析了 Attention 机制和 Transformer 的核心——Encoder、Decoder 结构,接下来,我们就可以基于上一章实现的组件,搭建起一个完整的 Transformer 模型。
## 2.3.1 Embeddng 层
正如我们在第一章所讲过的,在 NLP 任务中,我们往往需要将自然语言的输入转化为机器可以处理的向量。在深度学习中,承担这个任务的组件就是 Embedding 层。
Embedding 层其实是一个存储固定大小的词典的嵌入向量查找表。也就是说,在输入神经网络之前,我们往往会先让自然语言输入通过分词器 tokenizer分词器的作用是把自然语言输入切分成 token 并转化成一个固定的 index。例如如果我们将词表大小设为 4输入“我喜欢你”那么分词器可以将输入转化成
input: 我
output: 0
input: 喜欢
output: 1
input
output: 2
当然在实际情况下tokenizer 的工作会比这更复杂。例如,分词有多种不同的方式,可以切分成词、切分成子词、切分成字符等,而词表大小则往往高达数万数十万。此处我们不赘述 tokenizer 的详细情况,在后文会详细介绍大模型的 tokenizer 是如何运行和训练的。
因此Embedding 层的输入往往是一个形状为 batch_sizeseq_len1的矩阵第一个维度是一次批处理的数量第二个维度是自然语言序列的长度第三个维度则是 token 经过 tokenizer 转化成的 index 值。例如对上述输入Embedding 层的输入会是:
[[0,1,2]]
其 batch_size 为1seq_len 为3转化出来的 index 如上。
而 Embedding 内部其实是一个可训练的Vocab_sizeembedding_dim的权重矩阵词表里的每一个值都对应一行维度为 embedding_dim 的向量。对于输入的值会对应到这个词向量然后拼接成batch_sizeseq_lenembedding_dim的矩阵输出。
上述实现并不复杂,我们可以直接使用 torch 中的 Embedding 层:
```python
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
```
## 2.3.2 位置编码
Attention 机制可以实现良好的并行计算,但同时,其注意力计算的方式也导致序列中相对位置的丢失。在 RNN、LSTM 中,输入序列会沿着语句本身的顺序被依次递归处理,因此输入序列的顺序提供了极其重要的信息,这也和自然语言的本身特性非常吻合。
但从上文对 Attention 机制的分析我们可以发现,在 Attention 机制的计算过程中,对于序列中的每一个 token其他各个位置对其来说都是平等的即“我喜欢你”和“你喜欢我”在 Attention 机制看来是完全相同的,但无疑这是 Attention 机制存在的一个巨大问题。因此为使用序列顺序信息保留序列中的相对位置信息Transformer 采用了位置编码机制,该机制也在之后被多种模型沿用。
​位置编码,即根据序列中 token 的相对位置对其进行编码再将位置编码加入词向量编码中。位置编码的方式有很多Transformer 使用了正余弦函数来进行位置编码绝对位置编码Sinusoidal其编码方式为
$$
PE(pos, 2i) = sin(pos/10000^{2i/d_{model}})\\
PE(pos, 2i+1) = cos(pos/10000^{2i/d_{model}})
$$
上式中pos 为 token 在句子中的位置2i 和 2i+1 则是指示了 token 是奇数位置还是偶数位置,从上式中我们可以看出对于奇数位置的 token 和偶数位置的 tokenTransformer 采用了不同的函数进行编码。
我们以一个简单的例子来说明位置编码的计算过程:假如我们输入的是一个长度为 4 的句子"I like to code",我们可以得到下面的词向量矩阵$\rm x$,其中每一行代表的就是一个词向量,$\rm x_0=[0.1,0.2,0.3,0.4]$对应的就是“I”的词向量它的pos就是为0以此类推第二行代表的是“like”的词向量它的pos就是1
$$
\rm x = \begin{bmatrix} 0.1 & 0.2 & 0.3 & 0.4 \\ 0.2 & 0.3 & 0.4 & 0.5 \\ 0.3 & 0.4 & 0.5 & 0.6 \\ 0.4 & 0.5 & 0.6 & 0.7 \end{bmatrix}
$$
​则经过位置编码后的词向量为:
$$
\rm x_{PE} = \begin{bmatrix} 0.1 & 0.2 & 0.3 & 0.4 \\ 0.2 & 0.3 & 0.4 & 0.5 \\ 0.3 & 0.4 & 0.5 & 0.6 \\ 0.4 & 0.5 & 0.6 & 0.7 \end{bmatrix} + \begin{bmatrix} \sin(\frac{0}{10000^0}) & \cos(\frac{0}{10000^0}) & \sin(\frac{0}{10000^{2/4}}) & \cos(\frac{0}{10000^{2/4}}) \\ \sin(\frac{1}{10000^0}) & \cos(\frac{1}{10000^0}) & \sin(\frac{1}{10000^{2/4}}) & \cos(\frac{1}{10000^{2/4}}) \\ \sin(\frac{2}{10000^0}) & \cos(\frac{2}{10000^0}) & \sin(\frac{2}{10000^{2/4}}) & \cos(\frac{2}{10000^{2/4}}) \\ \sin(\frac{3}{10000^0}) & \cos(\frac{3}{10000^0}) & \sin(\frac{3}{10000^{2/4}}) & \cos(\frac{3}{10000^{2/4}}) \end{bmatrix} = \begin{bmatrix} 0.1 & 1.2 & 0.3 & 1.4 \\ 1.041 & 0.84 & 0.41 & 1.49 \\ 1.209 & -0.016 & 0.52 & 1.59 \\ 0.541 & -0.489 & 0.895 & 1.655 \end{bmatrix}
$$
我们可以使用如下的代码来获取上述例子的位置编码:
```python
import numpy as np
import matplotlib.pyplot as plt
def PositionEncoding(seq_len, d_model, n=10000):
P = np.zeros((seq_len, d_model))
for k in range(seq_len):
for i in np.arange(int(d_model/2)):
denominator = np.power(n, 2*i/d_model)
P[k, 2*i] = np.sin(k/denominator)
P[k, 2*i+1] = np.cos(k/denominator)
return P
P = PositionEncoding(seq_len=4, d_model=4, n=100)
print(P)
```
```python
[[ 0. 1. 0. 1. ]
[ 0.84147098 0.54030231 0.09983342 0.99500417]
[ 0.90929743 -0.41614684 0.19866933 0.98006658]
[ 0.14112001 -0.9899925 0.29552021 0.95533649]]
```
这样的位置编码主要有两个好处:
1. 使 PE 能够适应比训练集里面所有句子更长的句子,假设训练集里面最长的句子是有 20 个单词,突然来了一个长度为 21 的句子,则使用公式计算的方法可以计算出第 21 位的 Embedding。
2. 可以让模型容易地计算出相对位置,对于固定长度的间距 kPE(pos+k) 可以用 PE(pos) 计算得到。因为 Sin(A+B) = Sin(A)Cos(B) + Cos(A)Sin(B), Cos(A+B) = Cos(A)Cos(B) - Sin(A)Sin(B)。
我们也可以通过严谨的数学推导证明该编码方式的优越性。原始的 Transformer Embedding 可以表示为:
$$\begin{equation}f(\cdots,\boldsymbol{x}_m,\cdots,\boldsymbol{x}_n,\cdots)=f(\cdots,\boldsymbol{x}_n,\cdots,\boldsymbol{x}_m,\cdots)\end{equation}
$$
很明显,这样的函数是不具有不对称性的,也就是无法表征相对位置信息。我们想要得到这样一种编码方式:
$$\begin{equation}\tilde{f}(\cdots,\boldsymbol{x}_m,\cdots,\boldsymbol{x}_n,\cdots)=f(\cdots,\boldsymbol{x}_m + \boldsymbol{p}_m,\cdots,\boldsymbol{x}_n + \boldsymbol{p}_n,\cdots)\end{equation}
$$
这里加上的 $p_m$$p_n$ 就是位置编码。接下来我们将 $f(...,x_m+p_m,...,x_n+p_n)$ 在 m,n 两个位置上做泰勒展开:
$$\begin{equation}\tilde{f}\approx f + \boldsymbol{p}_m^{\top} \frac{\partial f}{\partial \boldsymbol{x}_m} + \boldsymbol{p}_n^{\top} \frac{\partial f}{\partial \boldsymbol{x}_n} + \frac{1}{2}\boldsymbol{p}_m^{\top} \frac{\partial^2 f}{\partial \boldsymbol{x}_m^2}\boldsymbol{p}_m + \frac{1}{2}\boldsymbol{p}_n^{\top} \frac{\partial^2 f}{\partial \boldsymbol{x}_n^2}\boldsymbol{p}_n + \underbrace{\boldsymbol{p}_m^{\top} \frac{\partial^2 f}{\partial \boldsymbol{x}_m \partial \boldsymbol{x}_n}\boldsymbol{p}_n}_{\boldsymbol{p}_m^{\top} \boldsymbol{\mathcal{H}} \boldsymbol{p}_n}\end{equation}$$
可以看到第1项与位置无关25项仅依赖单一位置第6项f 分别对 m、n 求偏导)与两个位置有关,所以我们希望第六项($p_m^THp_n$)表达相对位置信息,即求一个函数 g 使得
$$p_m^THp_n = g(m-n)$$
我们假设 $H$ 是一个单位矩阵,则:
$$p_m^THp_n = p_m^Tp_n = \langle\boldsymbol{p}_m, \boldsymbol{p}_n\rangle = g(m-n)$$
通过将向量 [x,y] 视为复数 x+yi基于复数的运算法则构建方程:
$$\begin{equation}\langle\boldsymbol{p}_m, \boldsymbol{p}_n\rangle = \text{Re}[\boldsymbol{p}_m \boldsymbol{p}_n^*]\end{equation}$$
再假设存在复数 $q_{m-n}$ 使得:
$$\begin{equation}\boldsymbol{p}_m \boldsymbol{p}_n^* = \boldsymbol{q}_{m-n}\end{equation}$$
使用复数的指数形式求解这个方程,得到二维情形下位置编码的解:
$$\begin{equation}\boldsymbol{p}_m = e^{\text{i}m\theta}\quad\Leftrightarrow\quad \boldsymbol{p}_m=\begin{pmatrix}\cos m\theta \\ \sin m\theta\end{pmatrix}\end{equation}$$
由于内积满足线性叠加性,所以更高维的偶数维位置编码,我们可以表示为多个二维位置编码的组合:
$$\begin{equation}\boldsymbol{p}_m = \begin{pmatrix}e^{\text{i}m\theta_0} \\ e^{\text{i}m\theta_1} \\ \vdots \\ e^{\text{i}m\theta_{d/2-1}}\end{pmatrix}\quad\Leftrightarrow\quad \boldsymbol{p}_m=\begin{pmatrix}\cos m\theta_0 \\ \sin m\theta_0 \\ \cos m\theta_1 \\ \sin m\theta_1 \\ \vdots \\ \cos m\theta_{d/2-1} \\ \sin m\theta_{d/2-1} \end{pmatrix}\end{equation}
$$
再取 $\theta_i = 10000^{-2i/d}$(该形式可以使得随着|mn|的增大⟨pm,pn⟩有着趋于零的趋势这一点可以通过对位置编码做积分来证明而 base 取为 10000 是实验结果),就得到了上文的编码方式。
当 $H$ 不是一个单位矩阵时,因为模型的 Embedding 层所形成的 d 维向量之间任意两个维度的相关性比较小,满足一定的解耦性,我们可以将其视作对角矩阵,那么使用上述编码:
$$\begin{equation}\boldsymbol{p}_m^{\top} \boldsymbol{\mathcal{H}} \boldsymbol{p}_n=\sum_{i=1}^{d/2} \boldsymbol{\mathcal{H}}_{2i,2i} \cos m\theta_i \cos n\theta_i + \boldsymbol{\mathcal{H}}_{2i+1,2i+1} \sin m\theta_i \sin n\theta_i\end{equation}
$$
通过积化和差:
$$\begin{equation}\sum_{i=1}^{d/2} \frac{1}{2}\left(\boldsymbol{\mathcal{H}}_{2i,2i} + \boldsymbol{\mathcal{H}}_{2i+1,2i+1}\right) \cos (m-n)\theta_i + \frac{1}{2}\left(\boldsymbol{\mathcal{H}}_{2i,2i} - \boldsymbol{\mathcal{H}}_{2i+1,2i+1}\right) \cos (m+n)\theta_i \end{equation}
$$
说明该编码仍然可以表示相对位置。
上述​编码结果示例如下:
![Positional Embedding](./figures/3-0.png)
基于上述原理,我们实现一个​位置编码层:
```python
class PositionalEncoding(nn.Module):
'''位置编码模块'''
def __init__(self, args):
super(PositionalEncoding, self).__init__()
# Dropout 层
self.dropout = nn.Dropout(p=args.dropout)
# block size 是序列的最大长度
pe = torch.zeros(args.block_size, args.n_embd)
position = torch.arange(0, args.block_size).unsqueeze(1)
# 计算 theta
div_term = torch.exp(
torch.arange(0, args.n_embd, 2) * -(math.log(10000.0) / args.n_embd)
)
# 分别计算 sin、cos 结果
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe)
def forward(self, x):
# 将位置编码加到 Embedding 结果上
x = x + self.pe[:, : x.size(1)].requires_grad_(False)
return self.dropout(x)
```
## 2.3.3 一个完整的 Transformer
上述所有组件,再按照下图的 Tranfromer 结构拼接起来就是一个完整的 Transformer 模型啦:
![Transformer 结构](./figures/3-1.png)
如图,经过 tokenizer 映射后的输出先经过 Embedding 层和 Positional Embedding 层编码,然后进入上一节讲过的 N 个 Encoder 和 N 个 Decoder在 Transformer 原模型中N 取为6最后经过一个线性层和一个 Softmax 层就得到了最终输出。
基于之前所实现过的组件,我们实现完整的 Transformer 模型:
```python
class Transformer(nn.Module):
'''整体模型'''
def __init__(self, args):
super().__init__()
# 必须输入词表大小和 block size
assert args.vocab_size is not None
assert args.block_size is not None
self.args = args
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(args.vocab_size, args.n_embd),
wpe = PositionalEncoding(args),
drop = nn.Dropout(args.dropout),
encoder = Encoder(args),
decoder = Decoder(args),
))
# 最后的线性层,输入是 n_embd输出是词表大小
self.lm_head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
# 初始化所有的权重
self.apply(self._init_weights)
# 查看所有参数的数量
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
'''统计所有参数的数量'''
def get_num_params(self, non_embedding=False):
# non_embedding: 是否统计 embedding 的参数
n_params = sum(p.numel() for p in self.parameters())
# 如果不统计 embedding 的参数,就减去
if non_embedding:
n_params -= self.transformer.wpe.weight.numel()
return n_params
'''初始化权重'''
def _init_weights(self, module):
# 线性层和 Embedding 层初始化为正则分布
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
'''前向计算函数'''
def forward(self, idx, targets=None):
# 输入为 idx维度为 (batch size, sequence length, 1)targets 为目标序列,用于计算 loss
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"不能计算该序列,该序列长度为 {t}, 最大序列长度只有 {self.config.block_size}"
# 通过 self.transformer
# 首先将输入 idx 通过 Embedding 层,得到维度为 (batch size, sequence length, n_embd)
print("idx",idx.size())
# 通过 Embedding 层
tok_emb = self.transformer.wte(idx)
print("tok_emb",tok_emb.size())
# 然后通过位置编码
pos_emb = self.transformer.wpe(tok_emb)
# 再进行 Dropout
x = self.transformer.drop(pos_emb)
# 然后通过 Encoder
print("x after wpe:",x.size())
enc_out = self.transformer.encoder(x)
print("enc_out:",enc_out.size())
# 再通过 Decoder
x = self.transformer.decoder(x, enc_out)
print("x after decoder:",x.size())
if targets is not None:
# 训练阶段,如果我们给了 targets就计算 loss
# 先通过最后的 Linear 层,得到维度为 (batch size, sequence length, vocab size)
logits = self.lm_head(x)
# 再跟 targets 计算交叉熵
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
# 推理阶段,我们只需要 logitsloss 为 None
# 取 -1 是只取序列中的最后一个作为输出
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
loss = None
return logits, loss
```
注意,上述代码除去搭建了整个 Transformer 结构外,我们还额外实现了三个函数:
- get_num_params用于统计模型的参数量
- _init_weights用于对模型所有参数进行随机初始化
- forward前向计算函数
另外,在前向计算函数中,我们对模型使用 pytorch 的交叉熵函数来计算损失,对于不同的损失函数,读者可以查阅 Pytorch 的官方文档,此处就不再赘述了。
经过上述步骤,我们就可以从零“手搓”一个完整的、可计算的 Transformer 模型。限于本书主要聚焦在 LLM在本章我们就不再详细讲述如何训练 Transformer 模型了;在后文中,我们将类似地从零“手搓”一个 LLaMA 模型,并手把手带大家训练一个属于自己的 Tiny LLaMA。