init ch6
This commit is contained in:
601
docs/chapter6/code/pretrain.py
Normal file
601
docs/chapter6/code/pretrain.py
Normal file
@@ -0,0 +1,601 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
'''
|
||||
@File : pretrain.py
|
||||
@Time : 2025/04/10 16:43:43
|
||||
@Author : Logan Zou
|
||||
@Version : 1.0
|
||||
@Contact : loganzou0421@163.com
|
||||
@License : (C)Copyright 2017-2018, Liugroup-NLPR-CASIA
|
||||
@Desc : 基于 Transformers 的 LLM 预训练脚本
|
||||
|
||||
注:参考仓库:https://github.com/LlamaFamily/Llama-Chinese
|
||||
'''
|
||||
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import sys
|
||||
from dataclasses import dataclass, field
|
||||
from torchdata.datapipes.iter import IterDataPipe, IterableWrapper
|
||||
from itertools import chain
|
||||
import deepspeed
|
||||
from typing import Optional,List
|
||||
import datasets
|
||||
import pandas as pd
|
||||
import evaluate
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from datasets.combine import interleave_datasets
|
||||
import transformers
|
||||
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
||||
from transformers import (
|
||||
CONFIG_MAPPING,
|
||||
MODEL_FOR_CAUSAL_LM_MAPPING,
|
||||
AutoConfig,
|
||||
AutoModelForCausalLM,
|
||||
AutoTokenizer,
|
||||
TrainerCallback,
|
||||
TrainerState,
|
||||
TrainerControl,
|
||||
HfArgumentParser,
|
||||
Trainer,
|
||||
TrainingArguments,
|
||||
default_data_collator,
|
||||
is_torch_tpu_available,
|
||||
set_seed,
|
||||
)
|
||||
import datetime
|
||||
from transformers.testing_utils import CaptureLogger
|
||||
from transformers.trainer_utils import get_last_checkpoint
|
||||
from transformers.utils import check_min_version, send_example_telemetry
|
||||
from transformers.utils.versions import require_version
|
||||
from datasets import interleave_datasets
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
|
||||
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
"""
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
||||
"""
|
||||
|
||||
model_name_or_path: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
|
||||
)
|
||||
},
|
||||
)
|
||||
model_type: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
||||
)
|
||||
config_overrides: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Override some existing default config settings when a model is trained from scratch. Example: "
|
||||
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
||||
)
|
||||
},
|
||||
)
|
||||
config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
||||
)
|
||||
tokenizer_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
||||
)
|
||||
use_fast_tokenizer: bool = field(
|
||||
default=True,
|
||||
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
||||
)
|
||||
model_revision: str = field(
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": (
|
||||
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
)
|
||||
},
|
||||
)
|
||||
torch_dtype: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
|
||||
"dtype will be automatically derived from the model's weights."
|
||||
),
|
||||
"choices": ["auto", "bfloat16", "float16", "float32"],
|
||||
},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
|
||||
raise ValueError(
|
||||
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataTrainingArguments:
|
||||
"""
|
||||
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||
"""
|
||||
|
||||
dataset_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
dataset_config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
train_files: Optional[List[str]] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
||||
validation_files: Optional[List[str]] = field(
|
||||
default=None,
|
||||
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
||||
)
|
||||
max_train_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
||||
"value if set."
|
||||
)
|
||||
},
|
||||
)
|
||||
max_eval_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
||||
"value if set."
|
||||
)
|
||||
},
|
||||
)
|
||||
streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
|
||||
block_size: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": (
|
||||
"Optional input sequence length after tokenization. "
|
||||
"The training dataset will be truncated in block of this size for training. "
|
||||
"Default to the model max input length for single sentence inputs (take into account special tokens)."
|
||||
)
|
||||
},
|
||||
)
|
||||
overwrite_cache: bool = field(
|
||||
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
||||
)
|
||||
validation_split_percentage: Optional[int] = field(
|
||||
default=5,
|
||||
metadata={
|
||||
"help": "The percentage of the train set used as validation set in case there's no validation split"
|
||||
},
|
||||
)
|
||||
preprocessing_num_workers: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={"help": "The number of processes to use for the preprocessing."},
|
||||
)
|
||||
keep_linebreaks: bool = field(
|
||||
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.streaming:
|
||||
require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
|
||||
|
||||
if self.dataset_name is None and self.train_files is None and self.validation_files is None:
|
||||
raise ValueError("Need either a dataset name or a training/validation file.")
|
||||
else:
|
||||
if self.train_files is not None:
|
||||
extension = self.train_files[0].split(".")[-1]
|
||||
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
|
||||
if self.validation_files is not None:
|
||||
extension = self.validation_files[0].split(".")[-1]
|
||||
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
|
||||
|
||||
def main():
|
||||
# See all possible arguments in src/transformers/training_args.py
|
||||
# or by passing the --help flag to this script.
|
||||
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
||||
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||
# If we pass only one argument to the script and it's the path to a json file,
|
||||
# let's parse it to get our arguments.
|
||||
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||
send_example_telemetry("run_clm", model_args, data_args)
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
handlers=[logging.StreamHandler(sys.stdout)],
|
||||
)
|
||||
|
||||
if training_args.should_log:
|
||||
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
||||
transformers.utils.logging.set_verbosity_info()
|
||||
|
||||
log_level = training_args.get_process_log_level()
|
||||
logger.setLevel(log_level)
|
||||
datasets.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.enable_default_handler()
|
||||
transformers.utils.logging.enable_explicit_format()
|
||||
|
||||
# Log on each process the small summary:
|
||||
logger.warning(
|
||||
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
||||
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
||||
)
|
||||
logger.info(f"Training/evaluation parameters {training_args}")
|
||||
|
||||
# Detecting last checkpoint.
|
||||
last_checkpoint = None
|
||||
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
||||
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
||||
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
||||
raise ValueError(
|
||||
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
||||
"Use --overwrite_output_dir to overcome."
|
||||
)
|
||||
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
||||
logger.info(
|
||||
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
||||
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
||||
)
|
||||
|
||||
# Set seed before initializing model.
|
||||
set_seed(training_args.seed)
|
||||
|
||||
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
||||
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
||||
# (the dataset will be downloaded automatically from the datasets Hub).
|
||||
#
|
||||
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
||||
# 'text' is found. You can easily tweak this behavior (see below).
|
||||
#
|
||||
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
||||
# download the dataset.
|
||||
if True:
|
||||
data_files = {}
|
||||
dataset_args = {}
|
||||
if data_args.train_files is not None:
|
||||
|
||||
print(data_args.train_files)
|
||||
data_files["train"] = data_args.train_files
|
||||
print('训练文件总个数',len(data_args.train_files))
|
||||
if data_args.validation_files is not None:
|
||||
data_files["validation"] = data_args.validation_files
|
||||
extension = (
|
||||
data_files["train"][0].split(".")[-1]
|
||||
if data_files["train"] is not None
|
||||
else data_args.validation_files.split(".")[-1]
|
||||
)
|
||||
if extension == "txt":
|
||||
extension = "text"
|
||||
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
|
||||
|
||||
|
||||
raw_datasets = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
streaming=data_args.streaming,
|
||||
cache_dir=os.path.join(training_args.output_dir,'dataset_cache'),
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
**dataset_args,
|
||||
)
|
||||
if data_args.streaming:
|
||||
raw_datasets = raw_datasets.shuffle(seed=training_args.seed, buffer_size=1000000)
|
||||
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
|
||||
if "validation" not in raw_datasets.keys():
|
||||
raw_datasets["validation"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[:{data_args.validation_split_percentage}%]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
**dataset_args,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[{data_args.validation_split_percentage}%:]",
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
**dataset_args,
|
||||
)
|
||||
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
#
|
||||
# Distributed training:
|
||||
# The .from_pretrained methods guarantee that only one local process can concurrently
|
||||
# download model & vocab.
|
||||
|
||||
config_kwargs = {
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"revision": model_args.model_revision,
|
||||
"use_auth_token": True if model_args.use_auth_token else None,
|
||||
}
|
||||
if model_args.config_name:
|
||||
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
|
||||
elif model_args.model_name_or_path:
|
||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
||||
else:
|
||||
config = CONFIG_MAPPING[model_args.model_type]()
|
||||
logger.warning("You are instantiating a new config instance from scratch.")
|
||||
if model_args.config_overrides is not None:
|
||||
logger.info(f"Overriding config: {model_args.config_overrides}")
|
||||
config.update_from_string(model_args.config_overrides)
|
||||
logger.info(f"New config: {config}")
|
||||
|
||||
print(training_args.local_rank,'start load tokenizer')
|
||||
tokenizer_kwargs = {
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"use_fast": model_args.use_fast_tokenizer,
|
||||
"revision": model_args.model_revision,
|
||||
"use_auth_token": True if model_args.use_auth_token else None,
|
||||
}
|
||||
if model_args.tokenizer_name:
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
|
||||
elif model_args.model_name_or_path:
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
|
||||
else:
|
||||
raise ValueError(
|
||||
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
||||
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
||||
)
|
||||
print(training_args.local_rank,'end load tokenizer')
|
||||
print(training_args.local_rank,'start load model')
|
||||
if model_args.model_name_or_path:
|
||||
torch_dtype = (
|
||||
model_args.torch_dtype
|
||||
if model_args.torch_dtype in ["auto", None]
|
||||
else getattr(torch, model_args.torch_dtype)
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
trust_remote_code=True,
|
||||
use_flash_attention_2=True,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_config(config,trust_remote_code=True)
|
||||
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
|
||||
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
|
||||
print(training_args.local_rank,'end load model')
|
||||
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
|
||||
# on a small vocab and want a smaller embedding size, remove this test.
|
||||
embedding_size = model.get_input_embeddings().weight.shape[0]
|
||||
if len(tokenizer) > embedding_size:
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
# Preprocessing the datasets.
|
||||
# First we tokenize all the texts.
|
||||
if training_args.do_train:
|
||||
if data_args.streaming:
|
||||
dataset_head = raw_datasets["train"].take(3)
|
||||
print(list(dataset_head))
|
||||
column_names = list(list(dataset_head)[0].keys())
|
||||
else:
|
||||
column_names = list(raw_datasets["train"].features)
|
||||
else:
|
||||
if data_args.streaming:
|
||||
dataset_head = raw_datasets["validation"].take(3)
|
||||
column_names = list(list(dataset_head)[0].keys())
|
||||
else:
|
||||
column_names = list(raw_datasets["validation"].features)
|
||||
print(column_names)
|
||||
text_column_name = "text" if "text" in column_names else column_names[0]
|
||||
|
||||
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
|
||||
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
|
||||
|
||||
def tokenize_function(examples):
|
||||
with CaptureLogger(tok_logger) as cl:
|
||||
output = tokenizer( [ item for item in examples[text_column_name]])
|
||||
return output
|
||||
|
||||
with training_args.main_process_first(desc="dataset map tokenization"):
|
||||
if not data_args.streaming:
|
||||
tokenized_datasets = raw_datasets.map(
|
||||
tokenize_function,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
desc="Running tokenizer on dataset",
|
||||
)
|
||||
else:
|
||||
tokenized_datasets = raw_datasets.map(
|
||||
tokenize_function,
|
||||
batched=True,
|
||||
remove_columns=column_names,
|
||||
batch_size = 60000,
|
||||
)
|
||||
|
||||
if data_args.block_size is None:
|
||||
block_size = tokenizer.model_max_length
|
||||
if block_size > 1024:
|
||||
logger.warning(
|
||||
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
|
||||
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
|
||||
" override this default with `--block_size xxx`."
|
||||
)
|
||||
block_size = 1024
|
||||
else:
|
||||
if data_args.block_size > tokenizer.model_max_length:
|
||||
logger.warning(
|
||||
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
|
||||
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
|
||||
)
|
||||
block_size = min(data_args.block_size, tokenizer.model_max_length)
|
||||
|
||||
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
|
||||
def group_texts(examples):
|
||||
# Concatenate all texts.
|
||||
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
||||
# concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
||||
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
||||
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
||||
# customize this part to your needs.
|
||||
if total_length >= block_size:
|
||||
total_length = (total_length // block_size) * block_size
|
||||
# Split by chunks of max_len.
|
||||
result = {
|
||||
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
||||
for k, t in concatenated_examples.items()
|
||||
}
|
||||
# print(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
|
||||
logger.info("group texts input examples length%d after_group size%d"%(len(examples['input_ids']),len(result["input_ids"])))
|
||||
result["labels"] = result["input_ids"].copy()
|
||||
return result
|
||||
|
||||
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
|
||||
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
|
||||
# to preprocess.
|
||||
#
|
||||
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
|
||||
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
|
||||
|
||||
with training_args.main_process_first(desc="grouping texts together"):
|
||||
if not data_args.streaming:
|
||||
lm_datasets = tokenized_datasets.map(
|
||||
group_texts,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
load_from_cache_file=not data_args.overwrite_cache,
|
||||
desc=f"Grouping texts in chunks of {block_size}",
|
||||
batch_size = 40000,
|
||||
)
|
||||
else:
|
||||
lm_datasets = tokenized_datasets.map(
|
||||
group_texts,
|
||||
batched=True,
|
||||
batch_size = 60000,
|
||||
)
|
||||
print(training_args.local_rank,'start select train_dataset')
|
||||
if training_args.do_train:
|
||||
if "train" not in tokenized_datasets:
|
||||
raise ValueError("--do_train requires a train dataset")
|
||||
train_dataset = lm_datasets["train"]
|
||||
if data_args.max_train_samples is not None and data_args.streaming==False:
|
||||
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
||||
train_dataset = train_dataset.select(range(max_train_samples))
|
||||
print(training_args.local_rank,'end select train_dataset')
|
||||
|
||||
if training_args.do_eval:
|
||||
if "validation" not in tokenized_datasets:
|
||||
raise ValueError("--do_eval requires a validation dataset")
|
||||
print(training_args.local_rank,'start select eval_dataset')
|
||||
eval_dataset = lm_datasets["validation"]
|
||||
if data_args.max_eval_samples is not None and data_args.streaming==False :
|
||||
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
||||
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
||||
print(training_args.local_rank,'end select eval_dataset')
|
||||
def preprocess_logits_for_metrics(logits, labels):
|
||||
if isinstance(logits, tuple):
|
||||
# Depending on the model and config, logits may contain extra tensors,
|
||||
# like past_key_values, but logits always come first
|
||||
logits = logits[0]
|
||||
return logits.argmax(dim=-1)
|
||||
print(training_args.local_rank,'start load metric')
|
||||
metric = evaluate.load("accuracy.py")
|
||||
print(training_args.local_rank,'end load metric')
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# preds have the same shape as the labels, after the argmax(-1) has been calculated
|
||||
# by preprocess_logits_for_metrics but we need to shift the labels
|
||||
labels = labels[:, 1:].reshape(-1)
|
||||
preds = preds[:, :-1].reshape(-1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
print(training_args.local_rank,'Initialize our Trainer')
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset= IterableWrapper(train_dataset) if training_args.do_train else None,
|
||||
eval_dataset= IterableWrapper(eval_dataset) if training_args.do_eval else None,
|
||||
tokenizer=tokenizer,
|
||||
# Data collator will default to DataCollatorWithPadding, so we change it.
|
||||
data_collator=default_data_collator,
|
||||
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
|
||||
preprocess_logits_for_metrics=preprocess_logits_for_metrics if training_args.do_eval and not is_torch_tpu_available()else None,
|
||||
# callbacks=([SavePeftModelCallback] if isinstance(model, PeftModel) else None),
|
||||
)
|
||||
|
||||
if training_args.do_train:
|
||||
checkpoint = None
|
||||
if training_args.resume_from_checkpoint is not None:
|
||||
checkpoint = training_args.resume_from_checkpoint
|
||||
elif last_checkpoint is not None:
|
||||
checkpoint = last_checkpoint
|
||||
|
||||
print(training_args.local_rank,'start train')
|
||||
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
||||
trainer.save_model() # Saves the tokenizer too for easy upload
|
||||
|
||||
metrics = train_result.metrics
|
||||
|
||||
max_train_samples = (
|
||||
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
||||
)
|
||||
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
||||
|
||||
trainer.log_metrics("train", metrics)
|
||||
trainer.save_metrics("train", metrics)
|
||||
trainer.save_state()
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
logger.info("*** Evaluate ***")
|
||||
|
||||
metrics = trainer.evaluate()
|
||||
|
||||
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
||||
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
||||
try:
|
||||
perplexity = math.exp(metrics["eval_loss"])
|
||||
except OverflowError:
|
||||
perplexity = float("inf")
|
||||
metrics["perplexity"] = perplexity
|
||||
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
|
||||
|
||||
def _mp_fn(index):
|
||||
# For xla_spawn (TPUs)
|
||||
main()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
91
docs/chapter6/code/whole.ipynb
Normal file
91
docs/chapter6/code/whole.ipynb
Normal file
@@ -0,0 +1,91 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"整体代码拆分"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Tokenizer "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"1. 训练一个 tokenzier"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"from tokenizers import ByteLevelBPETokenizer\n",
|
||||
"\n",
|
||||
"dir_path = \"\"\n",
|
||||
"paths = os.listdir(dir_path)\n",
|
||||
"\n",
|
||||
"# 使用字节级的 BPE 分词器\n",
|
||||
"tokenizer = ByteLevelBPETokenizer()\n",
|
||||
"\n",
|
||||
"# 进行训练\n",
|
||||
"# vocab_size:词表大小\n",
|
||||
"# min_frequency:最小词频\n",
|
||||
"# special_tokens:特殊 token 列表\n",
|
||||
"tokenizer.train(files=paths, vocab_size=52_000, min_frequency=2, special_tokens=[\n",
|
||||
" \"<s>\",\n",
|
||||
" \"<pad>\",\n",
|
||||
" \"</s>\",\n",
|
||||
" \"<unk>\",\n",
|
||||
" \"<mask>\",\n",
|
||||
"])\n",
|
||||
"\n",
|
||||
"# 训练完成后手动保存\n",
|
||||
"tokenizer.save_model(\".\", \"esperberto\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# 测试一下\n",
|
||||
"from tokenizers.implementations import ByteLevelBPETokenizer\n",
|
||||
"from tokenizers.processors import BertProcessing\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"tokenizer = ByteLevelBPETokenizer(\n",
|
||||
" \"./models/EsperBERTo-small/vocab.json\",\n",
|
||||
" \"./models/EsperBERTo-small/merges.txt\",\n",
|
||||
")\n",
|
||||
"tokenizer._tokenizer.post_processor = BertProcessing(\n",
|
||||
" (\"</s>\", tokenizer.token_to_id(\"</s>\")),\n",
|
||||
" (\"<s>\", tokenizer.token_to_id(\"<s>\")),\n",
|
||||
")\n",
|
||||
"tokenizer.enable_truncation(max_length=512)\n",
|
||||
"\n",
|
||||
"print(\n",
|
||||
" tokenizer.encode(\"Mi estas Julien.\")\n",
|
||||
")\n",
|
||||
"# Encoding(num_tokens=7, ...)\n",
|
||||
"# tokens: ['<s>', 'Mi', 'Ġestas', 'ĠJuli', 'en', '.', '</s>']\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
21
docs/chapter6/readme.md
Normal file
21
docs/chapter6/readme.md
Normal file
@@ -0,0 +1,21 @@
|
||||
# 第六章 基于 transformers 的 LLM 训练
|
||||
|
||||
注:本章的核心内容是,基于 transformers 框架实现 LLM 预训练和微调
|
||||
|
||||
1. 框架简述:
|
||||
1. transformers
|
||||
2. deepspeed
|
||||
3. peft
|
||||
4. wandb
|
||||
5. tokenizers
|
||||
2. 基于 transformers 的 LLM 预训练
|
||||
1. 分词器训练
|
||||
2. 数据集构建
|
||||
3. 模型搭建/继承预训练模型
|
||||
4. 构造 Trainer 进行训练
|
||||
3. 基于 transformers 的 LLM SFT/下游任务微调
|
||||
1. 分词器训练
|
||||
2. 数据集构建
|
||||
3. LoRA 配置
|
||||
4. 继承预训练模型
|
||||
5. 构造 Trainer 进行训练
|
||||
Reference in New Issue
Block a user