diff --git a/docs/chapter6/code/pretrain.py b/docs/chapter6/code/pretrain.py
new file mode 100644
index 0000000..7a60954
--- /dev/null
+++ b/docs/chapter6/code/pretrain.py
@@ -0,0 +1,601 @@
+#!/usr/bin/env python
+# -*- encoding: utf-8 -*-
+'''
+@File : pretrain.py
+@Time : 2025/04/10 16:43:43
+@Author : Logan Zou
+@Version : 1.0
+@Contact : loganzou0421@163.com
+@License : (C)Copyright 2017-2018, Liugroup-NLPR-CASIA
+@Desc : 基于 Transformers 的 LLM 预训练脚本
+
+注:参考仓库:https://github.com/LlamaFamily/Llama-Chinese
+'''
+
+import logging
+import math
+import os
+import sys
+from dataclasses import dataclass, field
+from torchdata.datapipes.iter import IterDataPipe, IterableWrapper
+from itertools import chain
+import deepspeed
+from typing import Optional,List
+import datasets
+import pandas as pd
+import evaluate
+import torch
+from datasets import load_dataset
+from datasets.combine import interleave_datasets
+import transformers
+from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
+from transformers import (
+ CONFIG_MAPPING,
+ MODEL_FOR_CAUSAL_LM_MAPPING,
+ AutoConfig,
+ AutoModelForCausalLM,
+ AutoTokenizer,
+ TrainerCallback,
+ TrainerState,
+ TrainerControl,
+ HfArgumentParser,
+ Trainer,
+ TrainingArguments,
+ default_data_collator,
+ is_torch_tpu_available,
+ set_seed,
+)
+import datetime
+from transformers.testing_utils import CaptureLogger
+from transformers.trainer_utils import get_last_checkpoint
+from transformers.utils import check_min_version, send_example_telemetry
+from transformers.utils.versions import require_version
+from datasets import interleave_datasets
+
+
+logger = logging.getLogger(__name__)
+
+
+MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
+MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
+
+@dataclass
+class ModelArguments:
+ """
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
+ """
+
+ model_name_or_path: Optional[str] = field(
+ default=None,
+ metadata={
+ "help": (
+ "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
+ )
+ },
+ )
+ model_type: Optional[str] = field(
+ default=None,
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
+ )
+ config_overrides: Optional[str] = field(
+ default=None,
+ metadata={
+ "help": (
+ "Override some existing default config settings when a model is trained from scratch. Example: "
+ "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
+ )
+ },
+ )
+ config_name: Optional[str] = field(
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
+ )
+ tokenizer_name: Optional[str] = field(
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
+ )
+ cache_dir: Optional[str] = field(
+ default=None,
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
+ )
+ use_fast_tokenizer: bool = field(
+ default=True,
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
+ )
+ model_revision: str = field(
+ default="main",
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
+ )
+ use_auth_token: bool = field(
+ default=False,
+ metadata={
+ "help": (
+ "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
+ "with private models)."
+ )
+ },
+ )
+ torch_dtype: Optional[str] = field(
+ default=None,
+ metadata={
+ "help": (
+ "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
+ "dtype will be automatically derived from the model's weights."
+ ),
+ "choices": ["auto", "bfloat16", "float16", "float32"],
+ },
+ )
+
+ def __post_init__(self):
+ if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
+ raise ValueError(
+ "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
+ )
+
+
+@dataclass
+class DataTrainingArguments:
+ """
+ Arguments pertaining to what data we are going to input our model for training and eval.
+ """
+
+ dataset_name: Optional[str] = field(
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
+ )
+ dataset_config_name: Optional[str] = field(
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
+ )
+ train_files: Optional[List[str]] = field(default=None, metadata={"help": "The input training data file (a text file)."})
+ validation_files: Optional[List[str]] = field(
+ default=None,
+ metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
+ )
+ max_train_samples: Optional[int] = field(
+ default=None,
+ metadata={
+ "help": (
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
+ "value if set."
+ )
+ },
+ )
+ max_eval_samples: Optional[int] = field(
+ default=None,
+ metadata={
+ "help": (
+ "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
+ "value if set."
+ )
+ },
+ )
+ streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
+ block_size: Optional[int] = field(
+ default=None,
+ metadata={
+ "help": (
+ "Optional input sequence length after tokenization. "
+ "The training dataset will be truncated in block of this size for training. "
+ "Default to the model max input length for single sentence inputs (take into account special tokens)."
+ )
+ },
+ )
+ overwrite_cache: bool = field(
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
+ )
+ validation_split_percentage: Optional[int] = field(
+ default=5,
+ metadata={
+ "help": "The percentage of the train set used as validation set in case there's no validation split"
+ },
+ )
+ preprocessing_num_workers: Optional[int] = field(
+ default=None,
+ metadata={"help": "The number of processes to use for the preprocessing."},
+ )
+ keep_linebreaks: bool = field(
+ default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
+ )
+
+ def __post_init__(self):
+ if self.streaming:
+ require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
+
+ if self.dataset_name is None and self.train_files is None and self.validation_files is None:
+ raise ValueError("Need either a dataset name or a training/validation file.")
+ else:
+ if self.train_files is not None:
+ extension = self.train_files[0].split(".")[-1]
+ assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
+ if self.validation_files is not None:
+ extension = self.validation_files[0].split(".")[-1]
+ assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
+
+def main():
+ # See all possible arguments in src/transformers/training_args.py
+ # or by passing the --help flag to this script.
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
+
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
+ # If we pass only one argument to the script and it's the path to a json file,
+ # let's parse it to get our arguments.
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
+ else:
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
+
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
+ # information sent is the one passed as arguments along with your Python/PyTorch versions.
+ send_example_telemetry("run_clm", model_args, data_args)
+
+ # Setup logging
+ logging.basicConfig(
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
+ datefmt="%m/%d/%Y %H:%M:%S",
+ handlers=[logging.StreamHandler(sys.stdout)],
+ )
+
+ if training_args.should_log:
+ # The default of training_args.log_level is passive, so we set log level at info here to have that default.
+ transformers.utils.logging.set_verbosity_info()
+
+ log_level = training_args.get_process_log_level()
+ logger.setLevel(log_level)
+ datasets.utils.logging.set_verbosity(log_level)
+ transformers.utils.logging.set_verbosity(log_level)
+ transformers.utils.logging.enable_default_handler()
+ transformers.utils.logging.enable_explicit_format()
+
+ # Log on each process the small summary:
+ logger.warning(
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
+ )
+ logger.info(f"Training/evaluation parameters {training_args}")
+
+ # Detecting last checkpoint.
+ last_checkpoint = None
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
+ raise ValueError(
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
+ "Use --overwrite_output_dir to overcome."
+ )
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
+ logger.info(
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
+ )
+
+ # Set seed before initializing model.
+ set_seed(training_args.seed)
+
+ # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
+ # (the dataset will be downloaded automatically from the datasets Hub).
+ #
+ # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
+ # 'text' is found. You can easily tweak this behavior (see below).
+ #
+ # In distributed training, the load_dataset function guarantee that only one local process can concurrently
+ # download the dataset.
+ if True:
+ data_files = {}
+ dataset_args = {}
+ if data_args.train_files is not None:
+
+ print(data_args.train_files)
+ data_files["train"] = data_args.train_files
+ print('训练文件总个数',len(data_args.train_files))
+ if data_args.validation_files is not None:
+ data_files["validation"] = data_args.validation_files
+ extension = (
+ data_files["train"][0].split(".")[-1]
+ if data_files["train"] is not None
+ else data_args.validation_files.split(".")[-1]
+ )
+ if extension == "txt":
+ extension = "text"
+ dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
+
+
+ raw_datasets = load_dataset(
+ extension,
+ data_files=data_files,
+ streaming=data_args.streaming,
+ cache_dir=os.path.join(training_args.output_dir,'dataset_cache'),
+ use_auth_token=True if model_args.use_auth_token else None,
+ **dataset_args,
+ )
+ if data_args.streaming:
+ raw_datasets = raw_datasets.shuffle(seed=training_args.seed, buffer_size=1000000)
+ # If no validation data is there, validation_split_percentage will be used to divide the dataset.
+ if "validation" not in raw_datasets.keys():
+ raw_datasets["validation"] = load_dataset(
+ extension,
+ data_files=data_files,
+ split=f"train[:{data_args.validation_split_percentage}%]",
+ cache_dir=model_args.cache_dir,
+ use_auth_token=True if model_args.use_auth_token else None,
+ **dataset_args,
+ )
+ raw_datasets["train"] = load_dataset(
+ extension,
+ data_files=data_files,
+ split=f"train[{data_args.validation_split_percentage}%:]",
+ cache_dir=model_args.cache_dir,
+ use_auth_token=True if model_args.use_auth_token else None,
+ **dataset_args,
+ )
+
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
+ # https://huggingface.co/docs/datasets/loading_datasets.html.
+
+ # Load pretrained model and tokenizer
+ #
+ # Distributed training:
+ # The .from_pretrained methods guarantee that only one local process can concurrently
+ # download model & vocab.
+
+ config_kwargs = {
+ "cache_dir": model_args.cache_dir,
+ "revision": model_args.model_revision,
+ "use_auth_token": True if model_args.use_auth_token else None,
+ }
+ if model_args.config_name:
+ config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
+ elif model_args.model_name_or_path:
+ config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
+ else:
+ config = CONFIG_MAPPING[model_args.model_type]()
+ logger.warning("You are instantiating a new config instance from scratch.")
+ if model_args.config_overrides is not None:
+ logger.info(f"Overriding config: {model_args.config_overrides}")
+ config.update_from_string(model_args.config_overrides)
+ logger.info(f"New config: {config}")
+
+ print(training_args.local_rank,'start load tokenizer')
+ tokenizer_kwargs = {
+ "cache_dir": model_args.cache_dir,
+ "use_fast": model_args.use_fast_tokenizer,
+ "revision": model_args.model_revision,
+ "use_auth_token": True if model_args.use_auth_token else None,
+ }
+ if model_args.tokenizer_name:
+ tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
+ elif model_args.model_name_or_path:
+ tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
+ else:
+ raise ValueError(
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script."
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
+ )
+ print(training_args.local_rank,'end load tokenizer')
+ print(training_args.local_rank,'start load model')
+ if model_args.model_name_or_path:
+ torch_dtype = (
+ model_args.torch_dtype
+ if model_args.torch_dtype in ["auto", None]
+ else getattr(torch, model_args.torch_dtype)
+ )
+ model = AutoModelForCausalLM.from_pretrained(
+ model_args.model_name_or_path,
+ from_tf=bool(".ckpt" in model_args.model_name_or_path),
+ config=config,
+ cache_dir=model_args.cache_dir,
+ revision=model_args.model_revision,
+ trust_remote_code=True,
+ use_flash_attention_2=True,
+ use_auth_token=True if model_args.use_auth_token else None,
+ )
+ else:
+ model = AutoModelForCausalLM.from_config(config,trust_remote_code=True)
+ n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
+ logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
+ print(training_args.local_rank,'end load model')
+ # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
+ # on a small vocab and want a smaller embedding size, remove this test.
+ embedding_size = model.get_input_embeddings().weight.shape[0]
+ if len(tokenizer) > embedding_size:
+ model.resize_token_embeddings(len(tokenizer))
+ # Preprocessing the datasets.
+ # First we tokenize all the texts.
+ if training_args.do_train:
+ if data_args.streaming:
+ dataset_head = raw_datasets["train"].take(3)
+ print(list(dataset_head))
+ column_names = list(list(dataset_head)[0].keys())
+ else:
+ column_names = list(raw_datasets["train"].features)
+ else:
+ if data_args.streaming:
+ dataset_head = raw_datasets["validation"].take(3)
+ column_names = list(list(dataset_head)[0].keys())
+ else:
+ column_names = list(raw_datasets["validation"].features)
+ print(column_names)
+ text_column_name = "text" if "text" in column_names else column_names[0]
+
+ # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
+ tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
+
+ def tokenize_function(examples):
+ with CaptureLogger(tok_logger) as cl:
+ output = tokenizer( [ item for item in examples[text_column_name]])
+ return output
+
+ with training_args.main_process_first(desc="dataset map tokenization"):
+ if not data_args.streaming:
+ tokenized_datasets = raw_datasets.map(
+ tokenize_function,
+ batched=True,
+ num_proc=data_args.preprocessing_num_workers,
+ remove_columns=column_names,
+ load_from_cache_file=not data_args.overwrite_cache,
+ desc="Running tokenizer on dataset",
+ )
+ else:
+ tokenized_datasets = raw_datasets.map(
+ tokenize_function,
+ batched=True,
+ remove_columns=column_names,
+ batch_size = 60000,
+ )
+
+ if data_args.block_size is None:
+ block_size = tokenizer.model_max_length
+ if block_size > 1024:
+ logger.warning(
+ "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
+ " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
+ " override this default with `--block_size xxx`."
+ )
+ block_size = 1024
+ else:
+ if data_args.block_size > tokenizer.model_max_length:
+ logger.warning(
+ f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
+ f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
+ )
+ block_size = min(data_args.block_size, tokenizer.model_max_length)
+
+ # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
+ def group_texts(examples):
+ # Concatenate all texts.
+ concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
+ # concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
+ total_length = len(concatenated_examples[list(examples.keys())[0]])
+ # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
+ # customize this part to your needs.
+ if total_length >= block_size:
+ total_length = (total_length // block_size) * block_size
+ # Split by chunks of max_len.
+ result = {
+ k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
+ for k, t in concatenated_examples.items()
+ }
+ # print(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
+ logger.info("group texts input examples length%d after_group size%d"%(len(examples['input_ids']),len(result["input_ids"])))
+ result["labels"] = result["input_ids"].copy()
+ return result
+
+ # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
+ # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
+ # to preprocess.
+ #
+ # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
+ # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
+
+ with training_args.main_process_first(desc="grouping texts together"):
+ if not data_args.streaming:
+ lm_datasets = tokenized_datasets.map(
+ group_texts,
+ batched=True,
+ num_proc=data_args.preprocessing_num_workers,
+ load_from_cache_file=not data_args.overwrite_cache,
+ desc=f"Grouping texts in chunks of {block_size}",
+ batch_size = 40000,
+ )
+ else:
+ lm_datasets = tokenized_datasets.map(
+ group_texts,
+ batched=True,
+ batch_size = 60000,
+ )
+ print(training_args.local_rank,'start select train_dataset')
+ if training_args.do_train:
+ if "train" not in tokenized_datasets:
+ raise ValueError("--do_train requires a train dataset")
+ train_dataset = lm_datasets["train"]
+ if data_args.max_train_samples is not None and data_args.streaming==False:
+ max_train_samples = min(len(train_dataset), data_args.max_train_samples)
+ train_dataset = train_dataset.select(range(max_train_samples))
+ print(training_args.local_rank,'end select train_dataset')
+
+ if training_args.do_eval:
+ if "validation" not in tokenized_datasets:
+ raise ValueError("--do_eval requires a validation dataset")
+ print(training_args.local_rank,'start select eval_dataset')
+ eval_dataset = lm_datasets["validation"]
+ if data_args.max_eval_samples is not None and data_args.streaming==False :
+ max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
+ eval_dataset = eval_dataset.select(range(max_eval_samples))
+ print(training_args.local_rank,'end select eval_dataset')
+ def preprocess_logits_for_metrics(logits, labels):
+ if isinstance(logits, tuple):
+ # Depending on the model and config, logits may contain extra tensors,
+ # like past_key_values, but logits always come first
+ logits = logits[0]
+ return logits.argmax(dim=-1)
+ print(training_args.local_rank,'start load metric')
+ metric = evaluate.load("accuracy.py")
+ print(training_args.local_rank,'end load metric')
+
+ def compute_metrics(eval_preds):
+ preds, labels = eval_preds
+ # preds have the same shape as the labels, after the argmax(-1) has been calculated
+ # by preprocess_logits_for_metrics but we need to shift the labels
+ labels = labels[:, 1:].reshape(-1)
+ preds = preds[:, :-1].reshape(-1)
+ return metric.compute(predictions=preds, references=labels)
+
+ print(training_args.local_rank,'Initialize our Trainer')
+ trainer = Trainer(
+ model=model,
+ args=training_args,
+ train_dataset= IterableWrapper(train_dataset) if training_args.do_train else None,
+ eval_dataset= IterableWrapper(eval_dataset) if training_args.do_eval else None,
+ tokenizer=tokenizer,
+ # Data collator will default to DataCollatorWithPadding, so we change it.
+ data_collator=default_data_collator,
+ compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
+ preprocess_logits_for_metrics=preprocess_logits_for_metrics if training_args.do_eval and not is_torch_tpu_available()else None,
+ # callbacks=([SavePeftModelCallback] if isinstance(model, PeftModel) else None),
+ )
+
+ if training_args.do_train:
+ checkpoint = None
+ if training_args.resume_from_checkpoint is not None:
+ checkpoint = training_args.resume_from_checkpoint
+ elif last_checkpoint is not None:
+ checkpoint = last_checkpoint
+
+ print(training_args.local_rank,'start train')
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
+ trainer.save_model() # Saves the tokenizer too for easy upload
+
+ metrics = train_result.metrics
+
+ max_train_samples = (
+ data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
+ )
+ metrics["train_samples"] = min(max_train_samples, len(train_dataset))
+
+ trainer.log_metrics("train", metrics)
+ trainer.save_metrics("train", metrics)
+ trainer.save_state()
+
+ # Evaluation
+ if training_args.do_eval:
+ logger.info("*** Evaluate ***")
+
+ metrics = trainer.evaluate()
+
+ max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
+ metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
+ try:
+ perplexity = math.exp(metrics["eval_loss"])
+ except OverflowError:
+ perplexity = float("inf")
+ metrics["perplexity"] = perplexity
+
+ trainer.log_metrics("eval", metrics)
+ trainer.save_metrics("eval", metrics)
+
+
+
+def _mp_fn(index):
+ # For xla_spawn (TPUs)
+ main()
+
+
+if __name__ == "__main__":
+ main()
\ No newline at end of file
diff --git a/docs/chapter6/code/whole.ipynb b/docs/chapter6/code/whole.ipynb
new file mode 100644
index 0000000..f9c31c4
--- /dev/null
+++ b/docs/chapter6/code/whole.ipynb
@@ -0,0 +1,91 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "整体代码拆分"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Tokenizer "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "1. 训练一个 tokenzier"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "from tokenizers import ByteLevelBPETokenizer\n",
+ "\n",
+ "dir_path = \"\"\n",
+ "paths = os.listdir(dir_path)\n",
+ "\n",
+ "# 使用字节级的 BPE 分词器\n",
+ "tokenizer = ByteLevelBPETokenizer()\n",
+ "\n",
+ "# 进行训练\n",
+ "# vocab_size:词表大小\n",
+ "# min_frequency:最小词频\n",
+ "# special_tokens:特殊 token 列表\n",
+ "tokenizer.train(files=paths, vocab_size=52_000, min_frequency=2, special_tokens=[\n",
+ " \"\",\n",
+ " \"\",\n",
+ " \"\",\n",
+ " \"\",\n",
+ " \"\",\n",
+ "])\n",
+ "\n",
+ "# 训练完成后手动保存\n",
+ "tokenizer.save_model(\".\", \"esperberto\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 测试一下\n",
+ "from tokenizers.implementations import ByteLevelBPETokenizer\n",
+ "from tokenizers.processors import BertProcessing\n",
+ "\n",
+ "\n",
+ "tokenizer = ByteLevelBPETokenizer(\n",
+ " \"./models/EsperBERTo-small/vocab.json\",\n",
+ " \"./models/EsperBERTo-small/merges.txt\",\n",
+ ")\n",
+ "tokenizer._tokenizer.post_processor = BertProcessing(\n",
+ " (\"\", tokenizer.token_to_id(\"\")),\n",
+ " (\"\", tokenizer.token_to_id(\"\")),\n",
+ ")\n",
+ "tokenizer.enable_truncation(max_length=512)\n",
+ "\n",
+ "print(\n",
+ " tokenizer.encode(\"Mi estas Julien.\")\n",
+ ")\n",
+ "# Encoding(num_tokens=7, ...)\n",
+ "# tokens: ['', 'Mi', 'Ġestas', 'ĠJuli', 'en', '.', '']\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/docs/chapter6/readme.md b/docs/chapter6/readme.md
new file mode 100644
index 0000000..c4f6579
--- /dev/null
+++ b/docs/chapter6/readme.md
@@ -0,0 +1,21 @@
+# 第六章 基于 transformers 的 LLM 训练
+
+注:本章的核心内容是,基于 transformers 框架实现 LLM 预训练和微调
+
+1. 框架简述:
+ 1. transformers
+ 2. deepspeed
+ 3. peft
+ 4. wandb
+ 5. tokenizers
+2. 基于 transformers 的 LLM 预训练
+ 1. 分词器训练
+ 2. 数据集构建
+ 3. 模型搭建/继承预训练模型
+ 4. 构造 Trainer 进行训练
+3. 基于 transformers 的 LLM SFT/下游任务微调
+ 1. 分词器训练
+ 2. 数据集构建
+ 3. LoRA 配置
+ 4. 继承预训练模型
+ 5. 构造 Trainer 进行训练
\ No newline at end of file