docs(chapter5): 更新模型文档并添加数据处理脚本

- 更新LLaMA2模型文档,修正图片引用和编号
- 添加Attention结构示意图
- 新增数据处理脚本download_dataset.sh和deal_dataset.py
- 优化文档中的代码示例说明
This commit is contained in:
KMnO4-zx
2025-06-18 16:26:33 +08:00
parent ada2e0c44f
commit ce535629ca
4 changed files with 47 additions and 29 deletions

View File

@@ -0,0 +1,49 @@
import os
import json
from tqdm import tqdm
# pretrain_data 为运行download_dataset.sh时下载的pretrain_data本地路径
pretrain_data = 'your local pretrain_data'
output_pretrain_data = 'seq_monkey_datawhale.jsonl'
# sft_data 为运行download_dataset.sh时下载的sft_data本地路径
sft_data = 'your local sft_data'
output_sft_data = 'BelleGroup_sft.jsonl'
# 1 处理预训练数据
def split_text(text, chunk_size=512):
"""将文本按指定长度切分成块"""
return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)]
with open(output_pretrain_data, 'a', encoding='utf-8') as pretrain:
with open(pretrain_data, 'r', encoding='utf-8') as f:
data = f.readlines()
for line in tqdm(data, desc=f"Processing lines in {pretrain_data}", leave=False): # 添加行级别的进度条
line = json.loads(line)
text = line['text']
chunks = split_text(text)
for chunk in chunks:
pretrain.write(json.dumps({'text': chunk}, ensure_ascii=False) + '\n')
# 2 处理SFT数据
def convert_message(data):
"""
将原始数据转换为标准格式
"""
message = [
{"role": "system", "content": "你是一个AI助手"},
]
for item in data:
if item['from'] == 'human':
message.append({'role': 'user', 'content': item['value']})
elif item['from'] == 'assistant':
message.append({'role': 'assistant', 'content': item['value']})
return message
with open(output_sft_data, 'a', encoding='utf-8') as sft:
with open(sft_data, 'r') as f:
data = f.readlines()
for item in tqdm(data, desc="Processing", unit="lines"):
item = json.loads(item)
message = convert_message(item['conversations'])
sft.write(json.dumps(message, ensure_ascii=False) + '\n')